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ABSTRACT
We present DisPerSE, a novel approach to the coherent multiscale identification of all types of
astrophysical structures, in particular the filaments, in the large-scale distribution of the matter
in the Universe. This method and the corresponding piece of software allows for a genuinely
scale-free and parameter-free identification of the voids, walls, filaments, clusters and their
configuration within the cosmic web, directly from the discrete distribution of particles in
N-body simulations or galaxies in sparse observational catalogues. To achieve that goal, the
method works directly over the Delaunay tessellation of the discrete sample and uses the
Delaunay tessellation field estimator density computed at each tracer particle; no further
sampling, smoothing or processing of the density field is required.

The idea is based on recent advances in distinct subdomains of the computational topology,
namely the discrete Morse theory which allows for a rigorous application of topological prin-
ciples to astrophysical data sets, and the theory of persistence, which allows us to consistently
account for the intrinsic uncertainty and Poisson noise within data sets. Practically, the user
can define a given persistence level in terms of robustness with respect to noise (defined as a
‘number of σ ’) and the algorithm returns the structures with the corresponding significance
as sets of critical points, lines, surfaces and volumes corresponding to the clusters, filaments,
walls and voids – filaments, connected at cluster nodes, crawling along the edges of walls
bounding the voids. From a geometrical point of view, the method is also interesting as it al-
lows for a robust quantification of the topological properties of a discrete distribution in terms
of Betti numbers or Euler characteristics, without having to resort to smoothing or having to
define a particular scale.

In this paper, we introduce the necessary mathematical background and describe the method
and implementation, while we address the application to 3D simulated and observed data sets
in the companion paper (Sousbie, Pichon & Kawahara, Paper II).

Key words: methods: data analysis – methods: numerical – galaxies: formation – galaxies:
kinematics and dynamics – cosmology: observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

The existence of an intricate network of filaments in the large-scale
distribution of matter is now considered an established fact. Its was
first observed by de Lapparent, Geller & Huchra (1986) (see also
e.g. Colless et al. 2003) and later theorized (see e.g. Bond, Kofman
& Pogosyan 1996; Pogosyan et al. 1996): underdense void regions
bounded by sheet-like walls embedded in a web-like filamentary
network branching on high-density dark matter haloes and galaxy
clusters form the so-called cosmic web (Bond et al. 1996) that spans
over a wide range of scales larger than the megaparsec. Dark mat-
ter haloes and galaxy clusters have arguably been the most-studied
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component and there exist a wide range of methods to identify
them in simulations or observational catalogues such as the classi-
cal friends-of-friends (FOF) (Huchra & Geller 1982), hierarchical
FOF and 6D minimal spanning tree (Gottloeber 1998), SUBFIND
(Springel et al. 2001), VOBOZ (Neyrinck, Gnedin & Hamilton 2005)
and ADAPTAHOP (Aubert, Pichon & Colombi 2004; Tweed et al.
2009) (the list is not exhaustive). Cosmological voids were first
observed by Kirshner et al. (1981) and theoretical models were
later developed (see e.g. Hoffman & Shaham 1982; Icke 1984;
Bertschinger 1985). Although they have been the subject of less
attention, there still exist a large number of references describing
their features and introducing numerical void finders, such as, for
instance, Neyrinck (2008), Platen, van de Weygaert & Jones (2007)
and Aragón-Calvo et al. (2010a) (see also the references therein).
Because of the intrinsic difficulty of even defining the concepts of
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walls and filaments, not to mention designing consistent identifica-
tion algorithms (especially in the case of observational data), their
generic properties still remain relatively uncertain. One can, for in-
stance, refer to Aragón-Calvo, van de Weygaert & Jones (2010c) for
a nice review of the different identification techniques and a study
of the filament properties in dark matter N-body simulations (see
also e.g. Gay et al. 2010), and Stoica, Martı́nez & Saar (2010) and
Sousbie et al. (2008a) for recent attempts at identifying filaments
properties in the SDSS and 2dFGRS galaxy catalogues, using the
Candy model (Stoica et al. 2005) and skeleton formalism (Sousbie
et al. 2008b), respectively. In this paper, we present a general frame-
work within which the physically meaningful objects that are the
voids, walls, filaments and haloes are rigorously and consistently
defined and we also detail the corresponding numerical method that
allows for their direct identification in simulated as well as obser-
vational data sets. We focus in particular on what is probably the
most-striking feature of the matter distribution on large scales in the
Universe, its filamentary structure.

During the last few years, the Morse theory (e.g. Milnor 1963;
Jost 2008) has been recognized as a very promising approach to
the global identification of all types of astrophysically significant
features of the large-scale galaxy distribution in the universe (see
e.g. Novikov, Colombi & Doré 2006; Hahn et al. 2007; Sousbie et al.
2008a,b; Forero-Romero et al. 2009; Sousbie, Colombi & Pichon
2009; Aragón-Calvo et al. 2010b). The main reason for this strong
interest comes from the fact that all the salient features of the web-
like pattern of galaxies have a direct, mathematically well-defined
equivalent in the Morse theory. In fact, the Morse theory mainly
relies on the definition of the so-called ascending and descending
k-manifolds, which partition space into a series of k-dimensional
domains defined by the gradient of a function (in the present case,
the density field), and the network whose branches are formed by
their intersections and whose nodes are the critical points, the so-
called the Morse complex (see Section 2). As illustrated in Fig. 1,
each of those can be directly associated to an astrophysical object
of interest: an ascending 3-manifold defines a void, an ascending
2-manifold defines a wall and an ascending 1-manifold defines a
filament, a descending 3-manifold defines a peak patch of the peak
theory (Bardeen et al. 1986) and the Morse complex defines some
sort of hierarchy and a notion of neighbourhood between them (see
Section 2 for more details).

Nevertheless, and as promising as it may seem, all the efforts
towards applying the Morse theory to astrophysical data sets such
as galaxy catalogues have so far been plagued by major difficulties.
Those difficulties are a direct consequence of the fact that the Morse
theory, although very attractive, is fundamentally a mathematical
theory defined for idealized, well-defined and properly behaved
smooth functions, which of course is not generally the case with
any physical data set resulting from actual measurements. At least
two critical issues can be identified in the case of the large-scale
structure identification problem. The first results from the presence
of the Poisson noise and large observational biases in galaxy cata-
logues, which should be dealt with from the start, especially when
the data set is relatively sparse as it becomes even more difficult in
that case to distinguish between noise features and the actual fea-
tures of the sampled data set. The second issue arises from the fact
that the Morse theory applies to the so-called Morse functions (see
Definition 2.2), which are sufficiently smooth twice-differentiable
continuous functions (whose critical points are non-degenerate),
whereas the galaxy distribution is discrete by nature. This incom-
patibility is fundamental, as it means that the theoretical notions
of the Morse theory may actually not apply to any practical data

set. A more detailed discussion of this problem is presented in Ap-
pendix A as well as an example of the consequences of neglecting
this inconsistency in the case of watershed-based methods, such as
Sousbie et al. (2009) and Aragón-Calvo et al. (2010b).

In this paper, we focus on presenting DisPerSE, a formalism, and
the corresponding software specifically designed for analysing the
cosmic web and its filamentary network. This formalism is based
on the Morse theory, while the aforementioned incompatibilities
with astrophysical data sets are overcome by relying on relatively
recent advances in distinct subdomains of the computational topol-
ogy. These domains are the discrete Morse theory [a distinct though
related theory developed by Forman, see Forman (1998b, 2002),
and references therein] and persistent homology, first introduced
in Edelsbrunner, Letscher & Zomorodian (2000, 2002). We there-
fore start by introducing the corresponding necessary notions of
the computational topology in Sections 2–4. Note that no previous
knowledge in the field of computational topology is assumed here,
the goal of those sections being mainly to introduce the required
mathematical vocabulary that we use extensively in the following
sections and give a glimpse at how those theories can help deepen
our understanding of the structure of the cosmic web. The reader
interested in pursuing this investigation further should refer to the
aforementioned references for a more detailed and involved in-
troduction. In particular, we strongly recommend the reading of
Gyulassy (2008) and especially Zomorodian (2009) for a very di-
dactic presentation of these concepts. Indeed, the particular method
and implementation presented in this paper are inspired by the work
presented in those two references.

We then proceed by showing in Section 5 how it is possible, re-
lying on the previously mentioned theories, to design an algorithm
that rigorously computes the discrete Morse complex of a discrete
density field, obtained using the Delaunay tessellation field esti-
mator (DTFE) technique (Schaap & van de Weygaert 2000; van de
Weygaert & Schaap 2009) from the Delaunay tessellation of a given
discretely sampled data set, such as the distribution of galaxies in
the universe. Within our approach, the Morse complex is directly
computed from the Delaunay tessellation which means it is scale
adaptive and parameter free. The problem of dealing with the Pois-
son noise and measurement errors is addressed in Section 6, where
we make use of the persistence theory to remove spurious topolog-
ical features from the Morse complex. Practically, the filamentary
network (and associated voids, walls, etc.) computed from the ini-
tial distribution is simplified by cancelling pairs of critical points
according to a persistence criterion that can be restated in terms of
the significance relative to shot noise. Finally, in Section 7, we ad-
dress technical questions such as dealing with boundary conditions,
smoothing the identified voids, walls and filaments, and important
implementation problems before concluding in Section 8.

Importantly, let us emphasize that within this framework, the
mathematical theories that we use are fundamentally discrete and
readily apply to the measured raw data; the unique supplementary
but critical step consists in defining heuristically a consistent la-
belling of the segments, triangle and tetrahedron of the Delaunay
tessellation with regards to the DTFE densities computed at the sam-
pling points (see Section 5.1). This warrants that all the well-known
and extensively studied mathematical properties of the Morse
complex are ensured by construction at the mesh level and that
the corresponding cosmological structures therefore correspond to
well-defined mathematical objects with known mathematical prop-
erties. It also provides a consistent way of reconnecting the corre-
sponding network after the removal of insignificant (non-persistent)
pairs of critical points.
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Figure 1. The dark matter density distribution in a 50 h−1 Mpc large cosmological simulation (top left-hand panel), with its ascending 3-manifolds (i.e. the
voids, top right-hand panel), ascending 2-manifolds (i.e. the walls, bottom left-hand panel) and ascending 1-manifolds (i.e. the filaments, bottom right-hand
panel). The manifolds were computed using the method introduced in Sousbie et al. (2009).

Note that a reference is given in the last two pages, in which most
mathematical terminologies introduced in Sections 2–4 is defined
in relatively simple terms. As we only aim here to introduce the nec-
essary mathematical notions and give a detailed description of the
computation pipeline, extensively illustrating each step, the appli-
cation to actual data sets is presented in a less-technical companion
paper, Sousbie, Pichon & Kawahara (2010) (hereinafter Paper II).
In that paper, we show the potential of this approach by applying it
to typical cosmological data sets: a large-scale dark matter cosmo-
logical N-body simulation and the 7th Data Release (DR7) of the
SDSS galaxy catalogue (Abazajian et al. 2009).

2 MO R S E T H E O RY F O R SM O OTH
M A N I F O L D S

Mathematically speaking, the Morse theory is concerned with
smooth scalar functions (say, height of a mountain or the tempera-

ture in a room) defined over generic manifolds. In the present case,
we are mainly interested in density fields: real-valued functions de-
fined over d-dimensional Euclidean spaces1

R
d . We will therefore

restrict the present discussion to such geometries for the sake of
simplicity. The Morse theory provides a way to capture the intri-
cate relation between the geometrical and topological properties of
a function. What one means by the geometrical property is basi-
cally any property unaffected by rigid motions such as translations
or rotations. If h is the altitude function of a mountain landscape,
for instance, the altitude of the highest peak or its total surface
are geometrical properties. Topology, on the other hand, captures
how points are connected to each other with notions such as that of
neighbourhood. Topological properties are invariant under smooth

1 This is actually not generally true. Numerical simulations, for instance,
often use periodic boundary conditions, which amount to defining the density
on a torus T

d ⊂ R
d .
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continuous transformations. Sometimes topology is coined to be
rubber geometry. If we stick to the landscape analogy and define
a mountain as a set of points that can be reached from its summit
by going down the slope (i.e. following the gradient of h), then
the mountain itself is in some sense a topological property of the
altitude function. Indeed, in winter, when covered with snow, or
during summer, after the snow melted, the altitude map slightly
changes, but the underlying mountain can still be easily identified
as the same mountain. For the same reasons, a crest linking two
mountains or a valley, for instance, are also topological properties
of the landscape. When it comes to characterizing a function such as
the matter density ρ on large scales in the universe, both topological
and geometrical properties are interesting. While topological prop-
erties such as the number of galaxy clusters or dark matter haloes
in a given volume are robust with respect to changes in the precise
measured value of ρ, geometrical properties, such as the density
profile and precise location of a halo or a filament, are more specific
and characterize better the properties of ρ.

The relation between geometry and topology is intricate and
while modifying the topology certainly requires a modification of
the geometry, the reverse is not generally true. For instance, the
shape of a mountain may only slightly change with season, but
more drastic events such as the explosion of a volcano (i.e. a drastic
change in the geometry) could actually erase it. The Morse theory
captures this relation for a generic function f by relying on the
gradient ∇xf (x) = df /dx(x) and its flow. The gradient defines
a preferential direction at every point (the direction of the steep-
est ascent) except where it vanishes (i.e. where ∇xf = 0). Those
particular points are called critical points and can be classified ac-
cording to the sign of the Hessian matrix, the d × d matrix of the
second derivatives Hf (x) = d2f /dxidxj (x):

Definition 2.1. (Critical point of order k) Let f be a function
defined over R

d and P a point with the coordinate p ∈ R
d . Then P

is a critical point of f if ∇xf ( p) = 0. It is said to be of order k if
the Hessian matrix Hf ( p) has exactly k negative eigenvalues.

Intuitively, in 2D, the top of a mountain is the maximum (order 2),
a pass is a saddle point (order 1) and the bottom of a valley is the
minimum (order 0). The top left-hand panel of Fig. 2 shows the
gradient and critical points of a function defined over R

2. On this
picture, the blue, green and red circles stand for the critical points
of order 0 (minima), 1 (saddle points) and 2 (maxima), respectively.
Note that according to Definition 2.1, the order of a critical point
is defined by the sign of the eigenvalues of the Hessian, which
must therefore be non-null. This condition is essential to the Morse
theory: a function f which obeys the Morse theory must necessarily
satisfy this constraint. Conversely, such functions are called Morse
functions.

Definition 2.2. (Morse function) A Morse function is a smooth
function whose critical points are non-degenerate. This means that
for any P such that ∇xf ( p) = 0, detHf ( p) �= 0.

We will assume from now on that f is a Morse function.2 At the
location of any non-critical point, the gradient indicates a preferred
direction and one can therefore define specific lines, the integral
lines, by following the gradient flow.

2 This is a strong requirement in practice, as shown in Appendix A.

Definition 2.3. (Integral line or field line) An integral line (also
called the field line) is a curve L(t) ∈ R

d such that

dL(t)

dt
= ∇xf . (1)

Its origin and destination are defined as limt→−∞ L(t) and
limt→+∞ L(t), respectively.

The pink curves in the top left-hand panel of Fig. 2 show examples
of integral lines: the lower order critical point at their extremity is
their origin and the higher one their destination. The integral lines
of a Morse function actually always have critical points as the origin
and destination. Let us consider the case of an integral line passing
through a base point P. One can show that such integral line obeys
certain properties:

Property 2.3.1. (Integral lines of a Morse function) The integral
lines of a Morse function f defined over R

d and passing through a
given point P is obtained by following the gradient and minus the
gradient from P. It obeys the following properties:

(i) The origin and destination of an integral line are critical points.
(ii) Two integral lines passing through the points P and P′ may

only be identical or fully distinct: two integral lines cannot intersect
(they can share their origin and/or destination though).

(iii) The set of all the integral lines covers all of R
d and each

point P of space belongs to exactly one integral line. It may be
the origin/destination of several integral lines if it is a critical point
though.

(iv) An integral line with the base point a critical point P is
reduced to that point P.

The combination of the first and second properties is particularly in-
teresting, as it allows to classify each point of space according to the
origin or destination of its (unique) integral line. Such classification
defines distinct regions of space called ascending and descending
manifolds.

Definition 2.4. (Ascending/descending n-manifold) Let P be a
critical point of order k of the Morse function f defined over R

d . The
ascending (d − k)-manifold defines a region of space with dimen-
sion (d − k): the set of points reached by integral lines with origin
P. The descending k-manifold defines a region of space with dimen-
sion k, the set of points reached by integral lines with destination
P.

There exist exactly d different classes of ascending and descending
manifolds, classified according to the order of the critical point at
their origin or destination. Note that an ascending or descending d-
manifold of a Morse function always spans a domain of dimension
d [i.e. a 0-manifold is a (critical) point, a 1-manifold a line, a
2-manifold a surface, a 3-manifold a volume, etc.]. The middle
panels of Fig. 2 show the ascending and descending 2-manifolds of
the 2D function in the upper panel. The notions of ascending and
descending manifolds are actually at the core of the Morse theory
and the set of the descending or ascending manifolds is usually
called the Morse complex.3

Definition 2.5. (Morse complex) The Morse complex of a Morse
function f is the set of its ascending (or descending) manifolds.

3 Whether one chooses to use the ascending or the descending manifolds
is only a matter of convention, as the descending n-manifolds of f are the
ascending n-manifolds of − f .
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Figure 2. A 2D density field with its gradient (top left-hand panel), its descending 2-manifolds (top right-hand panel), its ascending 2-manifolds (bottom
left-hand panel) and its Morse–Smale complex (bottom right-hand panel, see the black and white network). The maxima/saddle points/minima are represented
as the red/green/blue circled discs, respectively, and three integral lines are drawn in pink in the top left-hand panel. On the central left-hand part of the bottom
right-hand panel, an arc (i.e. a 1-cell) is represented in yellow (intersection of a green ascending 1-manifold and a blue descending 2-manifold) and a quad (i.e.
a 2-cell) in purple (intersection of a red descending 2-manifold and a blue ascending 2-manifold).

The notion of the Morse complex can actually be extended by fol-
lowing Smale and adding one more condition to a Morse function.

Definition 2.6. (Morse–Smale function) A Morse–Smale func-
tion is a Morse function whose ascending and descending manifolds
intersect only transversely,

where the word ‘transverse’ can be understood as the opposite of
‘tangent’, in the sense that there exists no point where two trans-
verse manifolds are tangent. In other words, two ascending and de-
scending manifolds should not be tangent and they should always
penetrate each other where they cross (i.e. they should ‘distinctly’
intersect where they do). This additional condition ensures that the
intersection of the ascending and descending manifolds is prop-

erly defined everywhere, so that the intersection of a p-ascending
manifold and a q-ascending manifold may only have dimension
n = min(p, q) or be void. Such a non-null intersection is called a
Morse–Smale n-cell:

Definition 2.7. (Morse–Smale n-cell) A Morse–Smale n-cell is the
non-void intersection of a p-ascending and a q-ascending manifold
of a Morse–Smale function such that n = min(p, q). A 1-cell is
generally called an arc, a 2-cell is a quad and a 3-cell a crystal.

An n-cell is a refinement of the concept of an ascending/descending
manifold, whereas the descending and ascending manifolds are
defined by the sets of integral lines having a common origin or
common destination, respectively; a n-cell is defined by the sets of
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integral lines with a common origin and destination. The bottom
right-hand panel of Fig. 2 displays examples of n-cells in 2D. The
purple region, for instance, is the quad defined by the intersection of
the red descending 2-manifold and the blue ascending 2-manifold:
all integral lines within this region have the minimum on its bound-
ary as the origin and the maximum as the destination (see also the
upper right-hand and lower left-hand panels). Similarly, the yellow
curve defines an arc at the intersection of the blue ascending 2-
manifold and the green descending 1-manifold, as only one integral
line has the minimum and saddle point at its extremities as the ori-
gin and destination. The set of all n-cells defines the Morse–Smale
complex.

Definition 2.8. (Morse–Smale complex) The Morse–Smale com-
plex of a Morse–Smale function f is the set of all the n-cells of
f .

In the same figure, the Morse–Smale complex is described by the
critical points and the black and white curves. Basically, the critical
points are its 0-cells, the set of black or white curves linking two
critical points are its arcs (1-cells), and the regions bounded by a
black and a white border are its quads (2-cells). In the 3D case we
will consider in the next sections, the Morse–Smale complex is also
composed of 3-cells (the so-called crystals). Note that the notion of
an n-cell is very interesting as it defines a natural partition of space
induced by the flow of the gradient, literally dividing it into a so-
called cell complex (a generalization of the concept of a simplicial
complex presented in Section 3). We do not give further details here
though as only the concept of the arc is really needed for our purpose;
the arcs really define how critical points are connected to each
other by integral lines. Actually, and although this is not formally
correct, the reader may find it simpler to only consider the nodes
(critical points) and arcs of the Morse–Smale complex, each arc
connecting the critical points at their extremities, two critical points
being potentially connected only if their orders differ by 1 (i.e. a
minimum and a 1-saddle, a 1-saddle and a 2-saddle or a 2-saddle and
a maximum). For instance, the arcs connecting maxima to saddle
points are subsets of the ascending 1-manifolds and they enclose the
information on how each filament (represented by its saddle point)
connects exactly two maxima. Note that the geometry of an arc is
determined by the integral lines whose origin and destination are
the two critical points the arc connects. The Morse–Smale complex
obeys the following ‘combinatorial’4 properties:

Property 2.8.1. (Morse–Smale complex arcs) The arcs (i.e. 1-
cells) in the Morse–Smale complex connect critical points in such
a way that

(i) two arcs may only intersect at a critical point;
(ii) an arc in the Morse–Smale complex links two critical points

with an index difference 1;
(iii) there are exactly two descending arcs reaching a given crit-

ical point of order 1 (each departing from not necessarily distinct
minima); and

(iv) there are exactly two ascending arcs departing from a given
critical point of order d − 1 (each reaching not necessarily distinct
maxima).

4 In this context, the term combinatorial is used to signify the discrete
properties of the network formed by the Morse–Smale complex: its number
of nodes, their types, the number of branches and cycles, etc. (see below).

Fig. 1 illustrates how the theoretical concepts of the Morse theory
apply to cosmology. In this figure, the dark matter density distri-
bution in a cosmological simulation is displayed in the top panel,
together with its ascensing 3-, 2- and 1-manifolds on the second,
third and fourth panels from the top, respectively. The ascending
3-manifolds associated to minima clearly trace the underdense re-
gions, usually denominated voids. The type 1 critical points trace
the geometry of the walls through their ascending 2-manifolds and
the filaments are traced by the ascending 1-manifolds, associated to
critical points of type 1. As stated as the beginning of this section, a
Morse complex actually establishes the link between the geometri-
cal (where are the critical points? what path does each arc follow?)
and topological (how are critical points connected? how many of
each type are there?) properties of the cosmic web. If the large-scale
matter density distribution ρ were a Morse function, then each crit-
ical point of ρ could in fact be associated to a topological feature
of the cosmic web whose geometry would then be described by an
ascending or descending manifold, the arcs defining a hierarchical
neighbourhood relation between them (the so-called combinato-
rial property). The purpose of this paper is to construct, from the
particles, a discrete Morse function which closely resembles5 the
sampled density (which in fact matches it at the vertex of the tes-
sellation) and which will therefore warrant all the corresponding
discrete topological features.

3 D I SCRETE MORSE THEORY

Even though the idea of applying the Morse theory directly to the
analysis of the cosmic web is quite appealing a priori, the task is
actually not straightforward in practice. Indeed, the Morse theory
is defined for a Morse function, which is basically a smooth and at
least twice differentiable real-valued function satisfying the Morse
criterion (Definition 2.2). Whether it is because they result from
fundamentally discrete processes, as in the case of the galaxy distri-
bution, or obtained through sampling, as for numerical simulation
or observational data, typical astrophysical data sets typically do not
comply with those criteria in general. In contrast, the discrete Morse
theory, first introduced by Forman (1998b, 2002), is a very powerful
theory which manages to capture the essence of the smooth Morse
theory while still being readily applicable to discrete or sampled
data commonly available to scientists. It is basically a combina-
torial adaptation of the Morse theory that applies to intrinsically
discrete functions defined over simplicial complexes.6

Let us start by defining the basic building block of such spaces,
the simplex. A k-simplex is the simplest possible geometrical figure
of dimension k or simply speaking the k-dimensional analogue
of a triangle: a 0-simplex, for instance, is a point, a 1-simplex a
segment, a 2-simplex a triangle, a 3-simplex a tetrahedron, etc.
More formally:

Definition 3.1. (k-simplex) A k-simplex σ k is the convex hull of
k + 1 affinely independent points S = {p0, . . . , pk}. In other words,
it is the set of points within the smallest possible solid with vertices
(i.e. its summits) the k + 1 points in S. It may be noted σ k =
{p0, . . . , pk}.

5 Conversely, this construction would bias the reconstructed Morse–Smale
complex if the underlying density was far from being a Morse function.
6 Actually, the discrete Morse theory applies to the broader class of topo-
logical spaces called CW-complexes, which also include functions sampled
over a regular cubic grid, for instance.
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A simplex may have faces and cofaces.

Definition 3.2. (Face/coface of a k-simplex) A face of a k-simplex
σ k with vertices S = {p0, . . . , pk} is any l-simplex γ l with l ≤ k,
such that its vertices P = {p0, . . . , pl} ⊂ S. If γ l is a face of σ k, then
σ k is a coface of γ l. In general, when k and l only differ by 1, a face
is called a facet and a coface is called a cofacet.

Simply speaking, considering a tetrahedron in 3D (i.e. a 3-simplex)
with four vertices, its 2-faces are four triangles (i.e. its facets, any
possible combination of three vertices), its 1-faces are six segments
(i.e. any possible combination of two vertices) and its 0-faces are
fours points (i.e. any possible combination of one vertex). Recipro-
cally, the tetrahedron is a coface of any of those triangles, segments
or points, and in particular it is a cofacet of any of the triangles.
In general, a k-simplex has Ck+1

l+1 faces of dimension l. Finally, a
simplicial complex is a set of k-simplexes that comply with specific
criteria:

Definition 3.3. (Simplicial complex) A simplicial complex K is a
finite union of simplexes such that

(i) any face of a simplex in K also belongs to K; and
(ii) the intersection of two simplexes in K is empty or a simplex

of dimension lower than or equal to the highest-dimension simplex
they share.

Fig. 3 shows an example of a combination of simplexes that form
a simplicial complex (left-hand panel) and a different combination
that do not (right-hand panel). A common example of a simplicial
complex in astrophysics is the Delaunay tessellation (see e.g. Okabe
2000; Schaap & van de Weygaert 2000; van de Weygaert & Schaap
2009) of a set of discretely sampled points.

As stated previously, the discrete Morse theory directly applies
to functions defined over a simplicial complex. Those particular
functions are called discrete functions and for the discrete Morse
theory to apply, they also need to comply with certain criteria:

Definition 3.4. (Discrete Morse function) A discrete function f
defined over a simplicial complex K associates a real value f (σk)
to each simplex σ k ∈ K. The discrete function f is a discrete Morse
function if and only if, for each σ k ∈ K,

Figure 3. Illustration of two sets of 3D simplexes, K and K′, forming a valid
(left-hand panel) and an invalid (right-hand panel) simplicial complex. It is
invalid because, from the left-hand to right-hand side and top to bottom, the
intersection of the two 2-simplexes is not a simplex in K′, two 1-simplexes
intersect, a 3-simplex (light yellow, mostly hidden tetrahedron), a 1-simplex
and a 2-simplex each lacks one of their facets.

(i) there exists at most one facet αk−1 of σ k such that f (σk) ≤
f (αk−1); and

(ii) there exists at most one cofacet βk+1 of σ k such that f (σk) ≥
f (βk+1).

In other words, the Hessian non-degeneracy condition of the smooth
Morse theory (Definition 2.2) becomes a condition on the value of
the functions in the discrete theory: locally, a simplex has a higher
value than its facets and a lower value than its cofacets, and there
can only be one exception at most in each case. The reason for such
a condition is not obvious at first sight, but it is actually essential to
the existence of a discrete gradient, the counterpart of the gradient in
the smooth theory. In fact, if conditions (i) and (ii) of Definition 2.2
of a discrete Morse function are satisfied, then, locally, the discrete
gradient of f (see below) can only define at most one preferential
direction, as does the gradient of the corresponding smooth theory.
Following this line of thought, the analogue of a critical point of
order k (see Definition 2.1), a critical k-simplex of f , is a simplex
for which f does not have any preferential relationship with one of
its direct neighbourhood (i.e. its facets and cofacets).

Definition 3.5. (Critical k-simplex) A k-simplex σ k is critical for
the discrete Morse function f if

(i) there exists no facet αk−1 of σ k such that f (σk) ≤ f (αk−1);
and

(ii) there exists no cofacet βk+1 of σ k such that f (σk) ≥ f (βk+1).

It is important here to realize that the equivalent in the discrete
Morse theory of a critical point of order k is a critical k-simplex:
in 2D, a minimum is a critical vertex (0-simplex), a saddle point is
a critical segment (1-simplex) and a maximum is a critical triangle
(2-simplex). This actually introduces an asymmetry in the discrete
theory that does not exist in its smooth counterpart: while a min-
imum and a maximum are both points in space, critical points of
order 0 and 3 are a vertex and a tetrahedron, respectively.7

We now proceed with the definition of a the discrete gradient. If
Definition 3.4 is satisfied, then at least one of the two conditions of
Definition 3.5 is verified, which leaves us with only two possible
configurations for a simplex σ k: exactly one of its cofacets and all
its facets have a lower value or exactly one of its facets and all its
cofacets have a higher value. In both cases, a preferential relation
is established between σ k and one of its facets or cofacets, which
also defines a preferential direction, and leads to the following
definition:

Definition 3.6. (Discrete gradient vector field) A discrete gradi-
ent vector field can be defined for a discrete Morse function f over
K by coupling simplexes in gradient arrows (also called gradient
pairs):

(i) If a simplex σ k has exactly one lower valued cofacet αk+1,
then [σk, αk+1] form a gradient arrow.

(ii) If a simplex σ k has exactly one higher valued facet βk−1, then
[σk, βk−1] form a gradient arrow.

7 A direct consequence is that f being a discrete Morse function does not
imply that − f also is. This apparent contradiction is solved by defining
the opposite of a discrete Morse function over the dual complex (i.e. the
Voronoi tessellation for the Delaunay tessellation). Indeed, each k-simplex
has a D − k dimensional dual counterpart and one can show that the discrete
function − f that attributes the value −f (σ ) to the dual cell of each simplex
σ is Morse. Note that it also defines the same topology, the critical index of
critical cells being simply reversed.
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8 T. Sousbie

(iii) If a simplex σ k satisfies Definition 3.5, it is critical and does
not belong to a gradient arrow.

Note that other configurations are impossible precisely because f is
a discrete Morse function. Also, within a gradient arrow, the lowest-
valued simplex is the tail and the highest-valued one is the head (i.e.
the discrete gradient actually points in the opposite direction of its
smooth counterpart).

Fig. 4 shows a discrete Morse function defined over a 2D simpli-
cial complex (upper left-hand panel) and its corresponding discrete
gradient vector field and critical simplexes (upper right-hand panel).
One can note the similarity in the relation between the discrete gra-
dient flow and the critical simplexes and that between the gradient
and critical points in the top panel of Fig. 2. Finally, one last impor-
tant definition is that of the discrete integral line. In the terminology
of Forman (1998a), it is called a V-path.

Definition 3.7. (V-path) A V-path is a strictly decreasing alternat-
ing sequence of k-simplexes αi

k and (k + 1)-simplexes β
j
k+1

α0
k , β

0
k+1, α

1
k , β

1
k+1, . . . , α

n
k , β

n
k+1,

where each pair {αi
k, β i

k+1} forms a gradient pair and αi+1
k is a facet

of β i
k+1.

Tracing a V-path basically consists in intuitively following the di-
rection of the gradient pairs, as one can see in the lower left-hand
panel of Fig. 4 where two V-paths are highlighted in purple.

Using the previously introduced concepts, it becomes relatively
straightforward to define a discrete Morse–Smale complex (DMC)
and contrary to the smooth case, no manifold transversality con-
dition (Definition 2.6) needs to be enforced, as this is naturally
achieved by the tessellation itself. In fact, following Definition 2.4:

Definition 3.8. (Discrete A./D. n-manifold) Let σ k be a critical
simplex of order k of the discrete Morse function f defined over a
simplicial complex K. The discrete ascending (d − k)-manifold is
the set of k-simplexes that belong to at least one V-path with origin
σ k. The discrete descending k-manifold is the set of k-simplexes
reached by field lines with destination σ k.

Note that according to that definition, a discrete k-manifold only
contains k-simplexes (those in the V-paths of σ k). This makes it
difficult to define discrete n-cells (see Definition 2.7) by intersecting
manifolds, as they are made of simplexes with different dimensions.
Following Gyulassy (2008), this definition is therefore extended to:

Definition 3.9. (Extended discrete A./D. n-manifold) An ex-
tended discrete ascending (descending) n-manifolds is a discrete as-
cending (descending) n-manifold, together with its cofacets (facets)
and their extended discrete ascending (descending) n-manifolds.

This literally fills lower dimensional ‘holes’ in the manifold, making
the intersection of two extended manifolds a very simple operation.
In the lower right-hand panel of Fig. 4, for instance, the discrete
ascending 2-manifold is represented by the blue dots only. Their
cofacets, the green segments, are included in the extended manifold,
as well as their extended ascending manifolds (red triangles). The
definition of the discrete Morse complex is therefore similar to the
one in the smooth case:

Definition 3.10. (Discrete morse complex) The discrete Morse
complex of a Morse function f is the set of its extended ascending
(or descending) manifolds.

Similarly, a discrete n-cell is the intersection of two extended as-
cending and descending discrete manifolds (Definition 2.7), and
the DMC remains the set of the discrete n-cells (Definition 2.8).
As in the smooth case, the DMC is really a combinatorial ob-
ject as it describes a particular way of grouping critical simplexes
in pairs, quads, crystals, etc., associating to each of those combi-
nations the geometry spanned by intersections of ascending and
descending manifolds. We conclude by noting that neglecting the
effect of boundary conditions, the arcs of the DMC (i.e. the V-paths
linking critical simplexes) obey the same properties as those of the
Morse–Smale complex (Definition 2.8.1).

4 TOPOLOGI CAL PERSI STENCE

The concept of the persistence was first formalized in Edelsbrunner
et al. (2002) (see also Robins (2000)). It is basically a method to
quantify the importance of the topological features of a space and
was initially developed as a way to robustly measure topological
properties when the noise is present and to enable the topological
simplification (i.e. the modification of a function or a space so that
its less-significant topological features are removed). The theory
was originally described in the context of simplicial homology (for
functions defined over a simplicial complex, see Appendix B) and
was very nicely exposed in Edelsbrunner et al. (2002). We would
like to stress here that the concept of the persistence itself is largely
independent of the fact that a function is smooth or not, as it only
quantifies the robustness of its topological properties, given one can
measure them, whatever be the nature of the function itself.

Persistence itself is a relatively simple concept. To study the
topology of a given function, one measures how the topology of
its excursion sets (i.e. the set of points with values higher than a
given threshold) evolves with the threshold. Whenever the threshold
crosses the value of a critical point, a component of the excursion
set gets created or destroyed, connected or disconnected, etc., each
critical point therefore contributing positively or negatively to the
Euler number of the set. The persistence is the measure of how long
a given positive critical point was contributing to the result before
being cancelled by the appearance of a given negatively indexed
critical point. In other words, a specific pair of positive and negative
critical points corresponds to the creation and destruction of a given
topological feature in the excursion set. The difference between
the values of the points in the pair is usually called its persistence
(although other ways of measuring persistence exist) and it basically
measures the lifetime of the corresponding feature in the excursion
set or equivalently its robustness with respect to changes in the
function.

More formally, for smooth functions, the persistence theory is
based on the evolving properties of the so-called sublevel sets or
equivalently of the excursion sets of a function ρ, as they change
with the value of the level ρ0. A sublevel set (an excursion set) is
basically a set of points where ρ (x = (x1, . . . , xn)) is lower (higher)
than or equal to a certain value ρ0:

Definition 4.1. (Level set, sublevel set) A level set (also called an
isocontour) of a function ρ (x) of n variables xi at level ρ0 is defined
as

(x1, . . . , xn) |ρ (x1, . . . , xn) = ρ0.
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Persistent cosmic web – I: Theory and implementation 9

Figure 4. Illustration of the notions introduced by the discrete Morse theory. In the upper left-hand panel [panel (a)], the numbers associated to each k-simplex
(i.e. vertices, segments and triangles) of the underlying simplicial complex define a discrete Morse function. Note that a discrete Morse function must comply
with Definition 3.4, which is relatively restrictive, and in the present case, the function has been designed to illustrate notions of the discrete Morse theory on
a relatively small complex. We show in Section 5.1 how a discrete Morse function can be defined to mimic the properties of a smooth function (such as the
density or an altitude field, for instance). The corresponding discrete gradient (see Definition 3.6) is represented by the arrows in the upper right-hand panel
[panel (b)], each arrow associating a k − 1-simplex (the tail) to a k-simplex (the head). In the same panel [see also panel (c)], the red, green and blue shaded
simplexes are the critical 2-, 1- and 0-simplexes of the discrete function, respectively (i.e. the equivalent of the maxima, saddle points and minima of the smooth
theory). In the lower left-hand panel [panel (c)], the two purple-shaded sets of simplexes correspond to two V-paths of the discrete Morse function (the discrete
analogue of an integral line, see Definition 3.7). Intuitively, a V-path is a set of simplexes linked by discrete gradient arrows, similarly to the integral lines
of the smooth theory. Finally, the extended ascending manifold (see Definition 3.9) of the minimum with value 2 (the large blue disc) is shown in the lower
right-hand panel [panel (d)]. Similarly to the smooth theory, the corresponding ascending 0-manifold (Definition 3.8) is defined by the set of simplexes that
one can reach by following the gradient arrows from the minimum (i.e. all the blue vertices and green segments that belong to a gradient pair – i.e. an arrow).
For the sake of consistency, one needs to define discrete extended manifolds (Definition 3.8), which also include recursively the cofacets of any simplex in the
discrete manifold, as well as the ascending manifolds of those cofacets that are critical. The resulting discrete extended ascending 0-manifolds is the set of blue
vertices, green segments and red triangles in the bottom right-hand panel.
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10 T. Sousbie

A sublevel set is defined as

(x1, . . . , xn) |ρ (x1, . . . , xn) ≤ ρ0.

A notion equivalent to that of a sublevel set, which astrophysicists
are familiar with, is that of an excursion set:

Definition 4.2. (Excursion set) An excursion set is the set of points
such that

(x1, . . . , xn) |ρ (x1, . . . , xn) ≥ ρ0.

We would like to emphasize here that using sublevel sets or ex-
cursion sets to define persistence is only a matter of convention:
while it is most common to find the former in mathematical pa-
pers (e.g. Forman 2002), the latter is more common in astrophysics,
density peaks corresponding to isolated components.

As previously mentioned and whatever be the convention, the
persistence can be interpreted as a measure of the ‘lifetime’ of
topological features, the so-called k-cycles, in the sublevel sets. For
instance, when the threshold value, ρ0, skims through the image
of ρ [i.e. the set of values ρ (x) may take] from the top to bottom,
the corresponding excursion set grows and the way it is connected
evolves. In 3D, isolated islands (also called components or 0-cycles)
first appear around the maxima. Those islands later merge into each
other at saddle points of type 1 to finally form rings bordering
holes (the 1-cycles). For lower values of ρ0, those holes get filled
at saddle points of type 2, destroying the corresponding 1-cycles,
to later form spherical shells around minima (the 2-cycles), when
a sufficient number of holes have been filled and those spherical
shells also end up being filled at minima, therefore destroying the
corresponding 2-cycles. The persistence relates the importance of a

given k-cycle to the length of the interval of values ρ0 can take and
for which a given k-cycle exists within the growing excursion sets.

Fig. 5 illustrates how the persistence works in 1D. In this figure,
the upper part displays four different functions, where the two on
the right-hand side (labelled A′ and B′) were obtained by discretely
sampling the two on the left-hand side (labelled A and B), adding
random noise and linearly interpolating between the sample points.
The lower part of the figure shows the different excursion sets of
these functions for values corresponding to their critical points.
In the bottom left-hand panel, for instance, the excursion sets of
ρ (x) are empty for levels ρ0 > 22. At level ρ0 = 22 though, a new
component (i.e. a 0-cycle) appears, which corresponds to the highest
maximum of the function. This component grows for levels 22 >

ρ0 > 21 and a new independent component appears at the level of the
second-highest maximum, ρ0 = 21. Those two components remain
independent while ρ0 > 20 but merge when reaching ρ0 = 20,
the value of the first minimum. Basically, the minimum destroyed
a component that was created by a maximum. By convention, we
say that it destroys the most recently created one (i.e the maximum
with the lowest density) and that the minimum and left maximum
therefore form a persistence pair (as illustrated on the middle sketch)
with the persistence 21 − 20 = 1. The four sketches in the bottom
part illustrate this pairing process for the four different functions.
One should note that a given critical point may not always be paired
in the process and that because the 1D case is very simple, a given
type of critical point always creates or always destroys, but this is
not the case, in general, for critical points that are not extrema.

A very common task when studying galaxy distributions or cos-
mological N-body simulations involves identifying galaxy clusters
or dark matter haloes. This is often achieved using relatively simple

Figure 5. Illustration of the concept of the persistence over a 1D function. The upper panel shows two functions (left-hand panel) and their discretely sampled
counterparts, with the noise added (right-hand panel). The lower panel displays the evolution of the excursion sets of these functions at the level of different
critical points as the density threshold increases. The green dot–dashed vertical arrows emphasize the lifetime of components in the sublevel sets; the persistence
pairs are displayed in the middle part over the function’s Morse–Smale complex.
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but robust methods, such as the FOF algorithm (Huchra & Geller
1982) that basically involves carefully selecting a global level ρc

and considering each independent component in the excursion set ρc

of the density field ρ (x) as an independent cosmological structure.
Applied to the functions A in Fig. 5, for example, such a method
may detect one or two different peaks with ρc = 19 or 20.5, respec-
tively, but it will not yield any information on whether those peaks
are comparable or if one of them is more meaningful than the other.
Persistence, on the other hand, can make such distinction, because
it is built using information present in all the excursion sets: while
function B contains two comparably persistent peaks, function A
really contains only one (the peaks’ persistence is symbolized by
the length of the green arrows in the figure). The remarkable fact is
that this stays true even if the sampling is poor and noise is present,
as illustrated by functions A′ and B′. Because of noise, many spuri-
ous peaks exist in these two functions, which may potentially lead
to numerous fake identifications, but even in that case, where a den-
sity selection method would clearly fail to count the peaks correctly,
persistence easily identifies the presence of only one persistent peak
in A′, and two in B′, as in the case of functions A and B.

Although a very simple 1D case was illustrated here, the general
idea remains the same in higher dimensional spaces. In general, one
studies how components of sublevel or excursions sets are created
and destroyed, but in higher dimensions, one also has to keep track
of more complex structures than independent components, such as
the formation of 2D holes or 3D shells in the structure (i.e. the
1-cycles and 2-cycles).

As mentioned earlier, persistence can equally be computed di-
rectly for discrete functions defined over simplicial complexes,
given that one can define a concept similar to that of growing sub-
level or excursion sets in such context. Note, however, that for
practical reasons and because it is always defined in such a way in
the literature, we will mainly use the sublevel set convention in the
discrete case (i.e. the function is scanned from the bottom to top). A
filtration, defined over a simplicial complex K, is a strictly growing
set of subcomplexes Ki of K. Each Ki of a filtration contains a
subset of the simplexes in K larger than Ki−1 and smaller than Ki+1.
More formally:

Definition 4.3. (Filtration) A filtration F of a finite simplicial
complex K is a sequence of N + 1 subcomplexes Ki of K such that

(1) ∅ = K0 ⊆ K1 ⊆ . . . ⊆ KN−1 ⊆ KN = K,
(2) Ki+1 = Ki ∪ δi,

where each δi is a different set of simplexes of K and A ⊆ B means
that A is included in or equal to B.

Basically, the size of a subcomplex in a filtration grows with its
index, similarly to the sublevel sets of a smooth function which
grow with the threshold value. So by defining a discrete function
ρD (σi), which associates a value to each and every simplex σ i of K,
one also defines an ordering over the simplexes in K (e.g. according
to the ascending values of ρD). The discrete equivalent of a growing
sublevel set for a smooth function ρ is therefore a filtration FρD

within which each simplex σ i enters at a time i such that ρD (σi−1) ≤
ρD (σi) ≤ ρD (σi+1). In that case, a subcomplex Ki contains all the
simplexes of K with values lower than that of ρD (σi) (see Fig. 6 for
an example of such a filtration).

Similarly to the sublevel sets of the smooth function ρ, as the
filtration FρD grows, new components, loops, shells, etc., appear,
reflecting the topology of ρD. Those topological features are gener-
ally called k-cycles and we define them formally in the context of

Figure 6. Illustration of the topological simplification process applied to
functions A, A′ and B′ defined in Fig. 5 (see the top, middle and bottom pan-
els). The diagram under each function represents its Morse–Smale complex
and persistence pairs.

the discrete theory (this definition would conceptually be very close
in the context of smooth functions though):

Definition 4.4. (k-cycle) A k-cycle in a simplicial complex K is a
k-dimensional topological feature with 0 ≤ k < D, where D is the
number of dimensions. When D = 3, for instance, a 0-cycle is an
independent component (i.e. a set of simplexes non-linked to the
rest of the complex), a 1-cycle is a loop (a set of simplexes that form
a ring with a hole in the middle) and a 2-cycle is a shell (a set of
simplexes bounding a 3D empty region).

As for a smooth function, one can therefore track the creation and
destruction of k-cycles in FρD as simplexes enter the filtration,
pairing critical simplexes into persistence pairs:

Definition 4.5. (Persistence) The persistence measures the ‘life-
time’ of topological features (i.e. k-cycles) in a filtration of a finite
simplicial complex K induced by a discrete function ρD or equiva-
lently in the growing sublevel sets of a smooth function ρ. The ar-
rival of each critical simplex in the discrete case or critical points in
the smooth case corresponds to the creation or destruction of a topo-
logical feature (k-cycle). The persistence pairs critical simplexes
σ a– σ b (or critical points Pa– Pb) that create and destroy a given
feature, their corresponding persistence being defined by the differ-
ence of their ‘arrival time’, ρD (σa) − ρD (σb) [or ρ (Pa) − ρ (Pb)].
It can also sometimes be useful to define a persistence ratio as the
ratio of those values.
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The computation of persistence pairs in a 2D filtration is illus-
trated in Appendix C and intuitively, the persistence describes how
much a function would need to change to remove a topological
feature.

The main interest of being able to identify persistence pairs of
critical points (or simplexes) in a given function is that it yields an
objective topological criterion to assess the significance of those
critical points (or simplexes). Actually, one can go even further
and show that it is actually always possible to locally modify the
function to cancel non-persistent pairs out and therefore remove
the topological noise. The process is illustrated in Fig. 6. In 1D, a
persistence pair is always formed of a minimum and a maximum.
If those two critical points are direct neighbours, one can in fact in-
crease the value around the minimum and decrease the value around
the maximum until the value at the maximum becomes smaller than
that at the minimum. When this happens, both points are not critical
anymore and none of the other critical points is affected. In the top
panel, for instance, the process is applied to the less-persistent bump
of function A. Note that the details of how the function is modified
are not important, but rather the fact that it is possible to cancel a
non-persistent pair and remove it from the Morse complex (see the
diagrams below the functions). For instance, if one considers that
structures whose persistence is lower or equal to the persistence of
the smaller bump of function A are not significant (i.e. generated by
noise with high probability), then one can remove the correspond-
ing topological features so that function A becomes topologically
equivalent to its simplified version (top right-hand panel) with the
corresponding Morse complex. Applying the same process to A′,
the noisy version of A, one actually obtains a function with an
identical topology and Morse complex (middle panels). This means
that even in the presence of a relatively important noise, it is still
possible using the persistence to recover the topology and Morse
complex of the underlying function (see also the bottom panel to
check how the topology of function B in Fig. 5 can be recovered
from its noisy counterpart, B′). We detail in Section 6.2 a generic
algorithm that implements symbolic topological simplification in
order to recover the structure of the Morse complex of the mat-
ter distribution on large scale from a raw noisy version computed
directly over a Delaunay tessellation.

5 D ISCRETE MORSE C OMPLEX

The basis of the necessary mathematical background being intro-
duced in Sections 2–4, we now start detailing the corresponding
algorithm and implementation used in DisPerSE. As previously
mentioned, our purpose is to compute a discrete Morse complex
and use its properties to identify and characterize the structure of
the cosmic web. This approach has both advantages of being appli-
cable to spaces with 3D or more and having a solid mathematical
framework (Gyulassy 2008, see e.g. chapter 6). To summarize, a
simplicial complex is computed from a discrete distribution (galaxy
catalogue, N-body simulation, etc.) using the Delaunay tessellation
and a density ρ is set to each galaxy using the DTFE (roughly
speaking, the density at a vertex is proportional to the inverse vol-
ume of its dual Voronoi cell). A discrete Morse function is then
defined by heuristically tagging a properly chosen value to each
simplex in the complex (i.e. the segments, facets and tetrahedron
of the tessellation). From this discrete function, we then compute
the discrete gradient and deduce the corresponding discrete DMC
(see Section 3; Forman 2002). The DMC is then used as the link
between the topological and geometrical properties of the density
field. Its critical points together with their ascending and descending

manifolds are identified to the peaks, filaments, walls and voids of
the density field (see Section 2). At this stage, the DMC is mainly
defined by the Poisson sampling noise and measurement uncertain-
ties and we filter it using the persistence theory (see Section 4 and
Appendices B and C). For that purpose, we consider the filtration of
the tessellation according to the values of the discrete Morse func-
tion and use it to compute persistence pairs of critical points. The
DMC is finally simplified by cancelling the pairs that are likely to
be generated by noise. This is achieved by computing the probabil-
ity distribution function of the persistence ratio of all types of pairs
in scale-invariant Gaussian random fields and cancelling the pairs
with a persistence ratio whose probability is lower than a certain
level.

5.1 Discrete gradient

As stated in Section 3, a discrete gradient field is derived from
a proper discrete Morse function, which must satisfy Definition
3.4. Although those conditions are restrictive enough to make the
deduction of a valid discrete Morse function difficult, they allow for
a wide variety of such functions to exist; one has to keep in mind
that the final discrete gradient field should be as similar as possible
to its continuous counterpart ∇ρ, the gradient of the density field
ρ. An optimal method to define a discrete gradient has yet to be
discovered, but Lewiner (2002) proposed a nice review on the topic
and relatively advanced solutions. Unfortunately, these solutions
involve the computation of relatively complex hypergraphs and are
not easily applicable to large data sets. Instead, we implement here
a modified version of the one presented in Gyulassy (2008), which
presents the advantage of not depending on an arbitrary labelling of
the simplexes.

The goal is to build a discrete Morse function ρD that complies
with Definition 3.4 while remaining as similar as possible to its
smooth counterpart, ρ. Conditions 3.4 put constraints on the relative
values of facets and cofacets, but not directly on simplexes of the
same dimension. As we use the DTFE to compute density, ρ is
determined at the location of each vertex and we may therefore set
ρD (σ0) = ρ (σ0) for any vertex σ 0 ∈ K. We then have to set values
of ρD for higher dimensional simplexes (i.e. segments, triangles,
etc.) in such a way that discrete Morse conditions (3.4) are ensured,
while the topology of ρ is sufficiently preserved. In other words,
arbitrary values of ρD may introduce spurious topological features
only if they have a sufficiently low persistence. The simplest way to
ensure discrete Morse conditions is to set all simplexes as critical:
simplexes only have to be higher than their faces and lower than
their cofacets. We therefore define a critical discrete Morse function
whose spurious critical points (i.e. those not stemming from ρ) are
not persistent.

Let σ k be a k-simplex that belongs to K, Facet [σk] ∈ S, the facets
of σ k, and Vertex [σk] ∈ S, the facets of σ k with dimension 0 (i.e.
its vertices). We may build a critical discrete Morse function from
ρ by setting
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k = 0 : ρD(σ0) = ρ(σ0),

k > 0 : ρD(σk) = max (ρD (Facet [σk]))

+ εk
∑

ρD (Vertex [σk]), (2)

where max () stands for the maximal value of its arguments, d is the
number of dimensions and ε is an infinitely small value. One can
easily check that such a function does comply with Definition 3.4 of
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a discrete Morse function. In fact, the value of a simplex is always
slightly higher than the value of its highest facet, and thanks to
the factor of εk, two simplexes sharing the same highest facet have
different values if two vertices in K cannot have the same density. In
practice, this is always the case when computing densities using the
DTFE and in the following, we will therefore assume that we are
in such a situation. For that reason, equation (2) defines the value
of ρD uniquely from a given smooth function ρ and independently
of any arbitrary labelling of the simplexes. Note that to compute
the DMC, one only needs to be able to compare simplexes and it
is therefore not necessary to give a particular value to ε, as only a
comparison operator needs to be implemented. This definition of
ρD allows for a unique ordering over the simplexes of K.

As explained in Section 3, a discrete gradient can be defined over
K by grouping pairs of simplexes whose dimensions differ only by 1
(i.e. a vertex and a segment, a segment and a triangle or a triangle and
a tetrahedron) and such that Conditions (3.6) are satisfied. A group
of two paired simplexes form a gradient pair and the remaining
unpaired simplexes are critical (the equivalent of the critical point
for a smooth density field8). Looking at Conditions (3.6), one can
see that for two simplexes to form a gradient pair, the simplex of a
lower dimension should always have a value higher than the other.
But because ρD has precisely been defined such that any simplex
has a value higher than its facets, no pair may be formed, and all
the simplexes in K are therefore initially critical. As a consequence,
the Morse complex of ρD can be readily deduced: each k-simplex
is a critical simplex of order k, and it is linked by an arc to each of
its facets and cofacets, which are also critical. Many of those arcs
actually link critical simplexes whose discrete Morse function ρD

only differ by an infinitesimal amount 
ρD ∝ εp though, and we
call such arcs ε-persistent. Because along those arcs the value of the
function only changes infinitesimally, they can be cancelled while
only modifying the value of ρD by an infinitely small amount. In
fact, doing so one can basically exchange the values of ρD given
to each critical simplex at the extremity of the ε-persistent arc and
pair them within a gradient arrow. By repeating this process until no
ε-persistent arcs exist anymore, one can therefore deduce a correct
discrete gradient.

In practice, we proceed by considering the sets of the k-simplexes
of K one by one, in ascending order of their dimension, and within
each set, we iterate over the simplexes σ k in ascending order of
their value ρD(σk). For each of them, if it is not already in a gradient
pair, we retrieve the lowest of its cofacets αk+1 ∈ 〈σk〉 that is not
already in a gradient pair and which value is only infinitesimally
higher than ρD(σk). If it exists, we pair them; else, σ k remains
unpaired. Note once again that the value of ρD does not need to
be explicitly modified in the actual implementation, as αk+1 and σ k

may only differ infinitesimally if σ k is the highest facet of αk+1. The
algorithm ends when all the simplexes have been checked once. We
show in Fig. 7 a practical example of how the algorithm runs on a
simple smooth function and a 2D simplicial complex spanning over
its domain of definition.

5.2 Discrete Morse complex computation

Once a proper discrete gradient has been defined over a simpli-
cial complex, it becomes relatively straightforward to deduce its

8 Note that a critical point of type k from the smooth theory is equivalent to a
critical k-simplex of the discrete theory. In 2D, minima are critical vertices,
saddle points are critical segments and maxima are critical triangles.

corresponding DMC. According to Definition 2.4, the ascending
(descending) manifold of a critical point Pk of order k is the set
of integral lines that end (start) at Pk. The discrete analogue of an
integral line is a V-path (i.e. a sequence of simplexes linked by the
discrete gradient, see Definition 3.7) and one can therefore identify
ascending (descending) manifolds by following the V-paths that end
(start) at a critical simplex Ck. The core of the algorithm consists in
a simple ‘breadth first search’ where sequences of cofacets and gra-
dient pairs are identified according to Definition 3.7. Each manifold
is stored in a separate set-type data structure as one simplex may be
reached by different V-paths within a manifold. Let A (Ck) be the
set that stores the ascending manifold of the critical k-simplex Ck.
The recursive algorithm starts by considering the set of the cofacets
of Ck, stored in an array Acur that will basically contain, at the nth
step of the algorithm, the set of (k + 1)-simplexes in the nth gradient
pair of any V-path starting at Ck. At each step, the content of Acur is
scanned and for each (k + 1)-simplex, there exist four possibilities:

(i) It is critical, in which case it is skipped as the V-path ends.
(ii) It is not critical, and is paired to a k-simplex in a gradient

pair. In that case, the k-simplex is added to A (Ck) and stored in a
temporary array Atmp.

(iii) It is not critical, but is paired by a discrete gradient to a
k-simplex already in A (Ck). In that case, it is skipped.

(iv) It is not critical and is paired to a k + 2-simplex in a gradient
pair. In that case, it is skipped.

Once all simplexes in Acur have been treated, the content of Acur

is replaced by the cofacets of the k-simplexes in Atmp and the pro-
cess is iterated until Acur is empty at which stage all the simplexes
in A (Ck) have been retrieved. The computation of the descending
manifold D (Ck) is achieved in exactly the same way, except that
cofacets are replaced by facets. A pseudo-code implementation is
presented in Algorithm 1 (see the non-tagged lines only). Note that
in this implementation, only k-simplexes are stored to describe the
manifold of a critical k-simplex, which reduces memory usage. It
also implies that the algorithm does not compute the extended dis-
crete manifolds of Definition 3.9, but rather those of Definition 3.8.
This is indeed not a problem though as those manifolds can easily
be extended at query time from the identified sets of k-simplexes.
Practically, extending an ascending (descending) k-manifold con-
sists in recursively adding the cofacets (facets) of any simplex in
the manifold, as well as the ascending (descending) p-manifolds
(p > k) of any of its critical p-simplexes.

Fig. 8 illustrates the result of applying this algorithm over the sim-
ple discrete gradient of Fig. 7 (note that the corresponding discrete
function and gradient have been reproduced in Fig. 8a). The four
diagrams displayed in Figs 8(c) and (d) show the result obtained
while computing the discrete extended ascending (left-hand panel)
and descending (right-hand panel) 1-manifolds of the three sad-
dle points (pink-, yellow- and blue-dashed lines), and the discrete
extended ascending (left-hand panel) and descending (right-hand
panel) 2-manifolds of the two minima and two maxima (pink- and
yellow-shaded regions), respectively.

As an example, let us detail first the process followed by our
algorithm to measure the ascending 1-manifold A (C1) of C1, the
critical 1-simplex (i.e. saddle point) with label d [see the red path
in the left-hand panel of Fig. 8(c)]. We start by considering the
cofacets of C1 = d and as there is only one, labelled B, we initially
set Acur = [B]. The 2-simplex B is linked to segment j by a gradient
arrow, j is therefore added to A (C1) and Atmp = j. Segment j has two
cofacets, the triangles B and D and we therefore set Acur = [B, D].
We then proceed by considering all triangles in Acur one by one.
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Figure 7. Illustration of the computation of a discrete gradient from a simple smooth function and a simplicial complex spanning its domain of definition, as
shown in panel (a). The corresponding discrete Morse function is represented in panel (b). Each vertex is labelled with the value of the corresponding smooth
function, and the lower-case and upper-case letters correspond to the labels of the segments and triangles, respectively, for which the corresponding value of
ρD is shown on the right-hand side of the panel (see equation 2). Note that sorting segment or triangle labels according to alphabetical order also sorts them in
increasing order of their value. Panel (c) illustrates the computation of the discrete gradient according to the algorithm described in Section 5.1, which works by
considering the vertices, segments and triangles one after the other, in increasing order of their value (from the left-hand to right-hand side and top to bottom in
the figure). Starting with the first vertex, ρD

−1 (1) (lower left-hand vertex), its cofacets are the segments labelled a, h and e with the values 3 + 4ε, 7 + 8ε and
6 + 7ε, respectively. As none of those values differs from 1 by a factor of ε only, no pair can be formed and the vertex remains critical (i.e. unpaired, represented
by a blue disc in the figure). The vertex with value 2 presents the same configuration and is therefore also critical, but the third one to enter, labelled 3, has
one available cofacet labelled a with the value 3 + 4ε that is only infinitesimally higher, which means the vertex and segment form a gradient pair (blue arrow
between 3 and a in the figure). The case of vertex 4 is similar and it is paired to segment b. The next vertex, labelled 5, is problematic because it presents two
cofacets with infinitesimally higher values, c and d, but the conflict is easily solved by pairing with one with the value closest to 5, segment c. We then proceed
until no vertex is available anymore and start considering segments (left-most box of the second row in the figure). Segments a, b and c are skipped because
they are already paired to vertices 3, 4 and 5 respectively. Segment d is free though but does not have an infinitesimally higher cofacet (i.e. triangle B); it is
therefore a critical segment (i.e. the equivalent of a saddle point, represented in green). Segments e and h are paired while f and g are found to be critical. This
leads to segments i whose cofacets are A and B, whose values differ from that of i by 11ε2 and 15ε2, respectively; i is therefore paired to the closest triangle in
value, A (red arrow on the diagram). The remaining segments are processed the same way and one can then start reviewing the triangles. Only D and H are not
paired, and as in 2D triangles have no cofacets, they are critical (coloured red in the figure). The final discrete gradient is shown in the bottom right-hand box
in panel (c).
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Figure 8. Illustration of the computation of the discrete extended ascending and descending manifolds and corresponding Morse–Smale complexes from a
discrete gradient. The application of the algorithm described in Section 5.2 over the simple discrete function and the gradient shown in panel (a) (see Fig. 7 for
the labels’ description) are illustrated in panels (c) and (d) for the ascending (left-hand panel) and descending (right-hand panel) 1-manifolds and 2-manifolds,
respectively (critical simplexes are identified by coloured discs in their centre). In panel (c), the ascending (left-hand side) and descending (right-hand side)
1-manifolds of the three critical 1-simplexes (i.e. equivalent of saddle points, represented by green discs) are represented as pink plain, cyan-dashed and yellow
plain broken lines, respectively. The 1-manifolds are represented as sets of segments joining the centres of simplexes according to Definition (3.7), a V-path is
an alternating sequence of k- and (k + 1)-simplexes linked by a facet–cofacet relation or belonging to a gradient pair. Note in the right-hand panel how it is
possible for two descending 1-manifolds (blue dashed and plain yellow or plain pink) to share a portion of their path. In panel (d), the ascending (left-hand
panel) and descending (right-hand panel) 2-manifolds of the two critical 0-simplexes (i.e. equivalent of minima, represented by blue discs) are coloured in pink
and yellow, respectively. The Morse–Smale complex is a set of n-cells obtained by intersecting pairs of ascending and descending manifolds (see Definitions
2.7 and 2.8) and it is represented over the initial smooth function in panel (b). In this figure, the black and yellow curves represent the arcs (i.e. 1-cells) linking
maxima–saddle points and minima–saddle points, respectively. It is very striking how the algorithm manages to correctly capture the essential features of the
Morse–Smale complex, even though it was only applied over a very crude simplicial tessellation of space: not only the critical points where correctly identified
as critical simplexes, but also the way they are connected by arcs is also correct (note that the arcs’ geometry was smoothed for clarity reasons).
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The 2-simplex B is not critical but is paired to segment j which
already belongs to A (C1); it is therefore skipped and we are left
with considering triangle D which is critical and is therefore also
skipped. Eventually, we obtain A (C1) = [j ]. The pink path in the
figure corresponds to the extended version of A (C1), obtained by
recursively including also the cofacets of the simplexes in A (C1),
namely triangles B and D.

Similarly, the algorithm can be applied to the critical vertex C0

with value 1 to retrieve its ascending 2-manifolds displayed in pink
on the left-hand panel of Fig. 8(d). The cofacets of vertex 1 are
segments a, h and e and, as none of them is critical, the algorithm
starts with Acur = [a, h, e]. The segments in Acur are paired with
vertices 3, 7 and 6, respectively, which are not critical vertices and
do not yet belong to A (C0); they are therefore added to A (C0) so
that A (C0) = Atmp = [3, 7, 6]. The content of Acur is then replaced
by all the segments that are cofacets of at least one vertex in Atmp and
we have Acur = [a, i, d, h, j, k, e, g, f ]. Considering the segments
in Acur one by one, a, h and e are skipped because they are paired
to vertices 3, 7 and 6, respectively, which belong to A (C0) , d, g

and f are skipped because they are critical, and segments i, j and k
are skipped because they are not paired to 1-simplexes, but to the
2-simplexes A, B and C, respectively. This leaves Atmp empty and
as a consequence Acur becomes void which stops the algorithm with
A (C0) = Atmp = 3, 7 and 6. The pink-shaded region in the figure
corresponds to the extended version of A (C0), obtained by adding
also the cofacets of vertices 3, 7 and 6, which are segments a, h, e,
d, i, j, g, k, o and f and triangles A, B, C, D, G and H, as well as the
extended ascending 1-manifolds of critical 1-simplexes d, g and f .

The computation of the arcs in the Morse–Smale complex is
slightly more involved. A Morse–Smale complex is formed by crit-
ical nodes and arcs linking them together. Those arcs are integral
lines that start at a critical point of order k + 1 and end at a critical
point of order k, so they always have dimension 1: they are rep-
resented by curves. Their discrete equivalents are V-paths linking
critical (k + 1)-simplexes and critical k-simplexes. In 2D, they are
simply described by the ascending and descending 1-manifolds (the
blue-, pink- and yellow-dashed lines in the upper part of Fig. 8b),
but this is not the case in higher dimensions where arcs are gener-
ally described by the 1D intersections of a descending and an as-
cending manifold. The bottom part of Fig. 8(b) shows the discrete
Morse–Smale complex computed from the simple density field ρ

represented by the background colour. It was obtained, thanks to
a modification of the manifold algorithm: when computing an as-
cending (descending) manifold of a critical k-simplex, we store the
list of critical (k + 1)-simplexes [(k−1)-simplexes] that are encoun-
tered and for each of them, trace the V-paths that led to them by
storing in separated arrays all the simplexes in each path when the
recursive procedure is returning. This way we obtain, for each pair
of the critical k-simplex and (k + 1)-simplex that are linked by a
V-path, the set of all simplexes in the V-path (i.e. the arcs of the
Morse complex). Note that in Fig. 8(b), each ascending (descend-
ing) 1-manifold is actually made of two arcs, each linking the same
saddle point to a maximum (minimum). Algorithm 1 presents the
pseudo-code for a function that computes the ascending or descend-
ing arcs and manifolds of a critical k-simplex, the manifolds and
arcs being returned in a global simplex array M and global list of
simplex array arcs, respectively. In this code, the lines dedicated to
identifying arcs are tagged to differentiate them from the simpler
manifold identification algorithm. After this function is called on a
critical simplex Ck, M will contain the index of all the k-simplexes
in the ascending (descending) manifold of Ck (not including Ck) and
arcs will contain a list of arrays, each containing the k-simplexes

in a V-path between Ck and another critical simplex Ck+1(Ck−1),
including Ck+1(Ck−1) and Ck.

We end this section with a comment on our implementation. The
ascending (d − k)-manifold and descending k-manifold of a critical
k-simplex are represented by lists of k-simplexes. This certainly
makes sense for the descending k-manifold, as in 3D, for instance,
volumes will be represented by lists of tetrahedrons, surfaces by
lists of faces and lines by lists of segments. However, this is not
the case for the ascending (d − k)-manifold, where, for instance,
the ascending 3-manifold of a minimum is represented by a list of
vertices. To solve this issue, one can choose to use extended mani-
folds instead of regular manifolds. This can be problematic though,
for instance, for visualization purpose, not only because it consid-
erably increases the number of simplexes within each manifold, but
also because in that case two neighbouring k-manifolds will edge

Algorithm 1: Computes the ascending or descending manifolds and arcs
of a critical simplex Sk . Variables arcs and M store the retrieved arcs and
manifold. Triangular marks tag the lines dedicated to arc identification only.

k-simplexes. For instance, in Fig. 8(d), the extended ascending 2-
manifolds should actually share 2-simplexes B, D, H and G if our
algorithm was followed. It is not the case in the figure though be-
cause we actually used the dual tessellation for the representation
of the extended ascending manifolds (i.e. the Voronoi tessellation
in our case, where the complex is computed on a Delaunay tessel-
lation). In fact, the dual tessellation associates a cell of dimension
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(d − k) to each k-simplex and one only has to interpret the list of
simplexes in an ascending manifold in terms of its dual Voronoi
cells, surfaces, lines or vertices, which does not necessitate any
modification of the algorithm. Note that this point of view is also
interesting as it enforces the fact that ascending and descending
manifolds intersect transversely (i.e. they cannot be tangent at any
point), an essential property of a Morse–Smale function (see Sec-
tion 2). In practice, we always use the dual representation for the
visualization of the descending manifolds, k-dimensional regions
being best represented by lists of k-dimensional elements. Note
nevertheless that k-manifolds remain stored in the memory as lists
of k-simplexes as this is much more efficient.

6 D EALING W ITH NOISE: PERSISTENCE
AND TO POLOGICAL SIMPLIFICATION

Using the algorithms introduced in the previous two sections, it is
possible to compute efficiently the DMC of basically any discretely
sampled function via the Delaunay tessellation of the sampling
points. Applied directly to the Delaunay tessellation of a discrete
galaxy catalogue or of a N-body dark matter simulation, the algo-
rithm could therefore theoretically be used to identify the filaments,
walls and voids. However, because it cannot discriminate between
the spurious Poisson noise induced detections and the actual cosmic
web features, it is of no practical interest as is. As an example, we
applied it to the output of a 50 h−1 Mpc large dark matter simula-
tion downsampled to 643 particles. Running a simple FOF algorithm
(Huchra & Geller 1982) with a linking length equal to one twentieth
of the interparticular distance and a minimal number of particles of
20 leads to the identification of 800 bound structures (i.e. potential
dark matter haloes). Computing the Morse complex of the same dis-
tribution leads to the identification of 12 771 maxima (i.e. potential
haloes) and 32 457 type-1 saddle points (i.e. potential filaments).
This suggests that only about ∼6 per cent of the detected struc-
tures are cosmologically significant and that most of the detected
filaments actually link spurious noise induced maxima. In order
to remedy this problem, we apply the concept of the persistence
(Edelsbrunner et al. 2000), introduced in Section 4. Roughly speak-
ing, the persistence defines a mathematically rigorous framework
to assess the significance of topological features, while the Morse
theory, by means of the Morse–Smale complex, establishes the link
between the local geometry and topology. We describe in the fol-
lowing how, using those theories together, the Morse complex can
be simplified in order to get rid of its unwanted features.

6.1 Pairing critical simplexes and persistence

Within the context of a smooth function, the persistence can be un-
derstood as a measure of the lifetime of a given topological feature
(interpreted as the relative importance or significance of that fea-
ture) within the evolving sublevels sets at levels varying from one
extreme of the function possible values to the other. Within a dis-
crete context, a very similar concept and interpretation can be made
for the filtration (see Definition 4.3) of a simplicial complex K:
new simplexes entering the filtration create or destroy topological
features, defining their persistence in terms of how many new sim-
plexes had to enter the filtration before a given topological feature
was destroyed. In that case, one therefore measures the importance
of the different topological features induced by the function that
defines the order of entrance of each simplex in the filtration. As we
are interested in the topology and geometry of the density function
ρ, it is natural to use its discrete counterpart ρD (see equation 2) to

Figure 9. Creation and destruction of k-cycles in a filtration according to
ρD (equation 2). An unlinked component creates a 0-cycle, a loop around a
hole creates a 1-cycle and a shell around an empty volume creates a 2-cycle.

define the time each simplex enters the filtration, as it associates a
distinct value to each simplex. We therefore consider the filtration
F of K according to the ascending values9 of ρD, similarly to what
was done in Section 5.2 to compute the Morse complex, and recast
the persistence measure in terms of the difference in the values of
ρD associated to the simplex that creates a feature and the simplex
that destroys it.

Because of the way ρD was defined, any simplex enters F before
its cofacets. In the 3D case, for instance, this is illustrated inn Fig. 9.
A vertex (0-simplex) is never linked to the rest of the subcomplex
when it enters F and therefore we say that it will always create a
new component (i.e. a 0-cycle) in the filtration. Similarly, when a
segment enters, its two faces already belong to F while its cofacets
do not yet: it forms a bridge between two 0-simplexes and may
therefore either destroy one component if those two 0-simplexes
belonged to distinct ‘islands’ or create a new 1-cycle (i.e. a loop, a
torus-like structure) in the other case. The same way, a facet could
destroy a 1-cycle by filling the hole in its centre or create a 2-cycle
(i.e. a shell) and a tetrahedron may only destroy a 2-cycle (i.e. fill a
shell). A consequence of the fact that all simplexes create or destroy
something is that all simplexes in the complex are initially critical,
as was already noted in Section 5.1, and our goal is to establish
which critical simplexes create and destroy a given k-cycle of F
(i.e. a component, a loop, a shell, etc.).

Actually, that is exactly what the algorithm that computes the
discrete gradient does for the so-called ε-persistent arcs (i.e. arcs
that link simplexes whose value ρD only differs by an infinitesimal
amount ε, see Section 5.1). In fact, a simplex σ k and its facet
σ k−1 may belong to a gradient pair if their values differ only by ε

(i.e. if they enter consecutively in the filtration). When this is the
case, the value of ρD is symbolically modified by an infinitesimal
amount so that σ k−1 actually enters just before σ k and none of
them may create or destroy a cycle anymore. While σ k created
a new k-cycle destroyed by σ k−1 in the initial filtration, this is
not the case anymore after the modification, as both simplexes are
not critical anymore and belong to the gradient pair instead. We
therefore only need to pair the critical simplexes that survive to
the discrete gradient computation (i.e. that belong to the DMC)
into persistence pairs. Edelsbrunner et al. (2000) first introduced an

9 Note that the choice of ordering according to the ascending or descending
value is totally arbitrary and has no importance.
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algorithm in 3D. Although more general and efficient approaches
have been developed since (e.g. Cohen-Steiner, Edelsbrunner &
Morozov 2006; Zomorodian 2009), we present here a variation of
the original one, directly implemented over the Morse complex.
Note that, given that only the critical simplexes identified in the
DMC of K create or destroy cycles, one only needs to consider the
Morse complex directly (i.e. as opposed to considering each and
every simplex in K) to identify persistence pairs. From that point, it
therefore does not matter anymore how the Morse–Smale complex
was computed or whether it is discrete or not, as both have identical
combinatorial properties anyway. Under the assumption that the
discrete Morse function was computed with enough care to correctly
inherit the topology of the underlying density field, we can therefore
indifferently talk about the critical points of the smooth density field
ρ or the critical k-simplexes σ k of the simplicial complex K in the
following. It is also equivalent to describe the persistence in terms
of creation/destruction events in the level sets of ρ or in the filtration
steps of the filtration induced by ρD (by convention, we choose to
order the entrance time by ascending values of ρD, making it similar
to the level sets of ρ).

The algorithm starts by tagging each critical simplex σ k as posi-
tive or negative depending on whether it creates or destroys a cycle.
As was noted before, in 3D, the critical vertices and tetrahedrons
(equivalent to minima and maxima) may only create a 0-cycle and
destroy a 2-cycle, respectively. The critical 0-simplexes are there-
fore all tagged positive and the critical 3-simplexes are tagged neg-
ative. The sign of the rest of the critical simplexes is determined
by following the growth and merging of each component in the
filtration using a ‘union-find’ type data structure.10 Depending on
whether a segment entering the filtration links two previously in-
dependent components (i.e. destroys a 0-cycle) or creates a new
bridge within one unique component (i.e. creates a 1-cycle), it will
be tagged negative or positive as it destroys a component or creates a
1-cycle. Tracking the creation of 2-cycles (i.e. shells) or destruction
of 1-cycles by the critical 2-simplexes in the filtration seems much
more complex though, but it can actually be made easy by consider-
ing the filtration F ′ induced by − ρD, where simplexes enter in the
opposite order to F . For symmetry reasons, a 2-simplex creating a
2-cycle in F actually destroys a component in F ′ and is therefore
positive, while a simplex destroying a 1-cycle in F actually creates
1-cycle in F ′ and is therefore negative. Exactly the same algorithm
and ‘union-find’ type data structure can therefore be used to track
those events in F ′ and decide the sign of each critical 2-simplex in
F .

Practically, let us consider the filtration in the ascending order
first. An entry is created in a ‘union-find’ structure for each critical
simplex in the DMC, each of them is initially attributed a different
group Id. Whenever a segment enters the filtration, the group Id of
its two facets are retrieved and we check if they differ or are equal.
In the first case, this means the segment created a bridge between
two previously disjoint structures. It is therefore tagged negative
and the groups of the two vertices and the segment are merged in
the union-find structure. In the second case, both vertices already
belonged to the same structure, which means that the introduction
of the segment created a new 1-cycle (i.e. a loop that passes through
the newly created bridge). The segment is therefore tagged posi-

10 A union-find data structure is particularly efficient at managing a large
number of sets of elements. It implements fast set merging (the ‘union’
operation) and is able to recover efficiently to which set a given element
belongs to (‘find’ operation).

tive and its group is merged with that of its facets. The sign of the
2-simplexes (triangles) is determined in the same way, but revers-
ing the order of the filtration: a face is tagged positive, whenever
it creates a bridge between two previously unlinked tetrahedrons
and negative whenever it links two tetrahedrons that were already
linked.

Algorithm 2: Finds persistence cycles created by a negative critical sim-
plex σ k .

Now that each critical simplex σ k has been attributed a sign,
we can reconsider the filtration F of the critical simplexes in as-
cending order and identify the persistence pairs using Algorithm
2. Instead of detailing how this, rather complex, algorithm works,
let us first explain its application to a simple 2D example for the
sake of clarity. Note that the method is very similar whatever be
the number of dimensions, as long as the sign of each critical
simplex has been previously determined and so deducing the 3D
case from the 2D one should be straightforward. We first define
a few variable names and types the algorithm uses. The purpose
of the function CYCLESEARCH(σk) is to retrieve the (k − 1)-cycle
destroyed by the negative critical simplex σ k. For each call, the
result is stored in a variable cycles that will at the end contain
the description of all cycles, each associated to its creating and
destroying a critical k-simplex. Each cycle is stored as a list of crit-
ical (k − 1)-simplexes that form a (k − 1)-cycle within the Morse–
Smale complex (for instance, a loop is stored as a list of critical
segments). Another variable, labelled ppairs, stores pairs of critical
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Figure 10. Illustration of the computation of persistence pairs using Algorithm 2 presented in Section 6.1. On the top left-hand panel, the Morse–Smale
complex of the underlying smooth function ρ is represented with blue, green and red discs, standing for minima, saddle points and maxima, respectively. Note
that the Morse complex is actually a DMC computed from a discrete morse function ρD (see equation 2) over a high-resolution tessellation (not represented),
so the blue, green and red discs equally stand for critical vertices, segments and triangles, respectively (the two views are equivalent under the assumption
that ρD correctly identifies the topology of ρ). The numbers n beside the disc correspond to the corresponding values of the density ρ. In the 12 panels in
the bottom part, the evolution in the sublevel sets (i.e. the set of points where density ρ is smaller than a given threshold ρn) of the smooth density field is
shown in the background, at levels ρn = n corresponding to the value n in the upper left-hand corner of each panel. In each panel, the identification of a new
persistence pair in the DMC is represented by a pink arc, while the corresponding cycle is symbolized by the red line. Note that cycles and pairs are identified
at the moment they are destroyed, not created, and the red-dashed lines in panels 16–18 roughly indicate the shape of the 1-cycles (i.e. 1D loop) at the moment
of their creation, for information. The pink plain and dashed circles indicate all nodes of the DMC that are concerned with the creation or destruction of a
cycle at a given step. Finally, all the identified persistence pairs are represented in the top right-hand panel, in blue or red, depending on their type. A detailed
description of the computation of the persistence pairs and k-cycles as shown in this figure is given in the main text (see the second half of Section 6.1).

simplexes that create or destroy each cycle [σk, σk−1]. Basically,
the function CYCLESEARCH(σk) is called once every time a negative
critical simplex σ k enters the filtration. Internally, the function uses
a variable CurSet, of special type ‘Z2-Set’, to store a temporary
list of critical (k − 1)-simplexes considered at a given time. The
type ‘Z2-Set’ implements the k-chain group addition of Definition
B.1 or, in other words, it behaves like a regular ‘Set-type’ structure
that stores sets of elements, but contrary to a normal ‘set’, adding

an element already contained in the Z2-Set results in its actual
removal.11

We show in Fig. 10 the aforementioned practical example of
persistence pairs and corresponding k-cycles computation over a

11 Hence the name, as each element behaves as if it was counted modulo 2,
with coefficients in Z2.
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simple Morse–Smale complex. The upper left-hand panel shows a
DMC computed from a high-resolution triangulation of the under-
lying density field ρ (note that only the smooth function is repre-
sented, not the simplicial complex). As mentioned earlier, only the
structure of the Morse–Smale complex is necessary to identify the
cycles, so in these figures, we represented in the background the
sublevel sets of the density field ρ instead of steps in the filtration
ρD to show how cycles are created and destroyed. We could iden-
tically have shown subsets of a simplicial complex and actually, at
this stage, we could equally say that the coloured discs represent
minima/critical points/maxima of the smooth field ρ or critical ver-
tices/segments/triangles (i.e. 0/1/2-simplexes) of the discrete Morse
function ρD.

A selection of 12 steps corresponding to the entrance in the
ascending filtration of 12 of the 21 critical simplexes are represented
in the panels in the bottom part. The entrance of the first eight critical
simplexes (blue discs) is not represented and the first-displayed
step, step 9, corresponds to the entrance of the rightmost critical 1-
simplex (green disc). Note, however, that before step 9, the critical
vertices (i.e. minima) from 1 to 7 already entered creating each
one component in the filtration, and critical segment 8 that also
entered, destroying the 0-cycle created by critical vertex 7 which
was merged with that of vertex 2 (this destruction is still represented
at step 9 by the pink and red lines though). Considering critical
segment σ 1 = 9, we first retrieve its two neighbouring critical 0-
simplexes, labelled 4 and 3, and we therefore have CurSet = {3,
4}. We first consider the highest, σ cur

0 = 4, and check if there is
a cycle associated to it in cycles[σ cur

0 ]. As this is not the case,
it means that we have found the cycle of σ 1 and therefore set
cycles[σ1] = cycles[σ cur

0 ] = CurSet = {3, 4} and insert the pair
[σ1, σ

cur
0 ] = [9, 4]. In panel 09 , all the critical simplexes involved

in the cycle are circled in pink, the pink arc connects the critical
simplexes in the identified pair and the red line represents the cycle.
For instance, in that case, we identified that critical segment 9
destroys the component (0-cycle) created by critical vertex 4, which
results in the components created by critical vertices 3 and 4 merging
into each other (see the sublevel sets in the background).

Step 10 is very similar to step 9, with critical segment σ 1 = 10
entering, and we therefore add the persistence pair [10, 6] to ppairs
and set cycles[σ1] = cycles[σ cur

0 = 6] = {6, 2}. Step 11 is skipped
as it corresponds to the entrance of a positive critical vertex (i.e.
the creation of a new component), but step 12 is more interesting.
Critical segment 12 is negative and we therefore start the algorithm
as previously by setting CurSet = {7, 1}, its neighbour critical
vertex on the DMC. The highest critical vertex in CurSet is σ cur

0 =
7, which was already paired at step 8 (represented in panel 09 ). We
therefore add the cycle associated to it, cycles[σ cur

0 = 7] = {2, 7},
to CurSet, which gives CurSet = {7, 1} + {2, 7} = {1, 2}, as the
addition is performed modulo 2 (CurSet is of type Z2-Set). The new
highest critical vertex in CurSet is therefore σ cur

0 = 2, which is not
paired yet. We therefore add the new pair [12, 2] to ppairs and set
cycles[σ1 = 12] = cycles[σ cur

0 = 2] = CurSet = {1, 2}, which
basically means that when critical segment 8 enters, the component
created by vertex 2 merges into that of vertex 1. Steps 13 and 14
correspond to simple pairings (similar to step 9), and step 15 is
similar to step 12, as critical vertex 4 is already paired, resulting
in variables ppairs and cycles being updated according to panels
13–15.

The critical segment entering at step 16 is different though, as it
creates a 1-cycle (symbolized by the red-dashed lines in panel 16).
Indeed, its neighbours’ critical vertices on the DMC are 3 and 5,
which already belong to the same component at step 16 (as can be

seen on the underlying sublevel set or on the DMC, by observing
that the path [5, 13, 2, 8, 7, 12, 1, 15, 4, 9, 3] only has critical sim-
plexes with values below 16). As this critical segment is therefore
positive, we skip it for now, but we will see later how its cycle will
be identified when it gets destroyed by a critical 2-simplex. The fol-
lowing steps 17 and 18 are similar, and the corresponding critical
segments are skipped.

The first negative critical 2-simplex enters at step 19. Following
Algorithm 2, we start with CurSet = {8, 12, 18, 13}, the four critical
segment neighbours of critical triangle 19 on the DMC. The highest-
valued critical vertex in CurSet is σ cur

1 = 18, which is not yet paired,
and we therefore add pair [19, 18] to ppairs and set cycles[σ2 =
19] = cycles[σ cur

1 = 18] = {8, 12, 18, 13}, represented by the red
loop in panel 19 (see also the red-dashed loop in panel 18, when the
cycle was created). This means that critical segment 18 created a
new 1-cycle that was destroyed by critical triangle 19 and this cycle
is represented by the closed path formed by critical segments {8,
12, 18, 13}, which are linked to each other through their neighbour
critical vertices in the DMC, 1, 7, 2 and 5 (the 1-cycle is given by the
sequence [18, 5, 13, 2, 8, 7, 12, 1, 18], which can be easily retrieved
at query time from the information in ccyles). Critical triangle 20
also destroys a 1-cycle. The process is similar to the previous step
and variables are updated accordingly. We finally proceed to step
21, where the last critical simplex enters. It is also negative (as
all critical triangles are anyway) and we start with CurSet = {9,
15, 16, 18}. The highest critical segment is σ cur

1 = 18, which is
already paired to critical triangle 19, and its cycles are therefore
added modulo 2 to CurSet, giving CurSet = {9, 15, 16, 18} +
cycles[σ cur

1 = 18] = {9, 15, 16, 18} + {8, 12, 18, 13} = {9, 15,
16, 8, 12, 13}. As critical segment 16, the highest in CurSet, is free,
this means we are done with identifying the last cycle. We therefore
update variables ppairs and cycles accordingly and the algorithm
terminates.

The upper right-hand panel shows all of the persistence pairs over
the DMC and one can convince himself/herself of the correctness of
the cycles retrieved at steps 19–21 by comparing them to what they
actually looked like in the sublevel sets when they were created, at
steps 16–18 (see the dashed red cycles and newly created closed
loops in the white isocontours in the background). Although we
do not show examples here, the method is strictly similar in higher
dimensions.

6.2 Simplification

The relative importance of topological features can be reliably as-
sessed using the persistence theory and it was briefly shown in
Section 4 how it is possible in the 1D case to locally modify a
smooth function in order to cancel a low-persistence pair of critical
points without affecting other critical points. Although it would also
seem a viable option to directly modify ρ in order to cancel non-
persistent pairs in the higher dimensions, this may not be the best
thing to do. From a purely technical point of view, for large data
sets, the computational cost of actually modifying ρ and recom-
puting the Morse–Smale complex every time would be excessive.
From a theoretical point of view, one would need to arbitrarily de-
fine a more or less natural way to smoothly transform ρ so that the
cancelling pairs would disappear without affecting the remaining
critical points. Fortunately, such a transformation does not need to
be explicitly conducted and it is enough to know that it exists and
how it affects the Morse–Smale complex.
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As a simple example, an arbitrary modification12 of the smooth
density field of Fig. 10 that cancels the low-persistence pair [18, 19
is presented in the top panels of Fig. 11. As expected, this modifi-
cation of ρ leads to the removal of the saddle point and maximum,
and a particular reorganization of the arcs in the Morse Complex.
Before cancellation, saddle point 18 was linked to two minima (1
and 5) and two maxima (19 and 21). With its removal, the arcs ema-
nating from the minima get rerouted to maximum 21 (as maximum
19 is also cancelled in the operation) and they are therefore not
critical anymore: they are removed from the Morse complex. The
situation is different for saddle points 8, 12 and 13 though, which
were linked to maximum 19. During the cancellation, the gradient
of ρ is reversed between the cancelled points (see the lower panels)
and the arcs that led to maximum 19 are therefore free to continue
their ascension up to the former position of the cancelled saddle
point, and further along the arc [18, 21], to finally reach maximum
21. Those field lines still link saddle points to maxima, are critical
and therefore belong to the new modified Morse complex.

The field line reorganization scheme during a cancellation can be
intuitively understood in the general case by defining a similar mini-
malistic transformation of a discrete Morse function and its discrete
gradient. Basically, the essential feature lies in the reversal of the
gradient path between the cancelled critical points. Such an opera-
tion can easily be defined over a discrete gradient (Forman 2002).
The corresponding modification is shown in the bottom panel of
Fig. 11, in the case of a discrete Morse function similar to ρ and
defined over a tessellation: by reversing the path of discrete gradient
arrows between the critical points (purple shade), the two critical
points are effectively removed, while the rest of the discrete gra-
dient is left unmodified, and it is easy to predict the consequences
of this modification on the discrete Morse complex. Let us call σ k

and σ k+1, the critical k and (k + 1)-simplexes to cancel, and αi
k+1

and β
j
k, the critical k + 1 and k-simplexes, respectively, linked to σ k

and σ k+1 by an arc in the DMC. By reversing the gradient path be-
tween σ k and σ k+1, one also reroutes all the arcs and manifolds that
previously reached one of those critical simplexes. After cancella-
tion, an ascending arc emanating from β

j
k still reaches the formerly

critical simplex σ k+1, and it can be extended through the reversed
path, and continues to follow any previously ascending arc emanat-
ing from σ k, leading to a critical (k + 1)-simplex αi

k+1. Similarly,
any descending (k + 1)-manifold of αi

k+1 now reaches σ k+1 and can
therefore be extended by the descending (k + 1)-manifold of σ k+1.
For the same reason, the ascending (d − k)-manifolds of β

j
k can be

extended by the ascending (d − k) manifolds of σ k+1. One therefore
does not need to actually perform any gradient path reversal and the
cancellation of the critical pair [σk, σk+1] is achieved directly on the
DMC using the following procedure:

(i) Let αi
k+1 and β

j
k be the Nα and Nβ critical k + 1 and k critical

simplexes sharing an arc in the DMC with σ k and σ k+1, respectively.
(ii) Create a new arc between each of the Nα , Nβ pair [αi

k+1, β
j
k ]

by joining arcs [αi
k+1, σk], [σk, σk+1] and [σk+1, β

j
k ]. The path

[σk, σk+1] must be reversed during the operation.
(iii) Extend the descending manifold of each αi

k+1 with the de-
scending manifold of σ k+1.

12 Note that achieving the modification shown in this example was actually
made easy by the fact that the function itself is analytically defined as a sum
of Gaussian functions; it would have been much more challenging in the
general case.

Figure 11. Topological simplification of a maximum and saddle point per-
sistence pair in the smooth 2D field ρ of Fig. 10. In the upper part, from the
top to bottom, the four panels display the Morse complex before and after
simplification, and the corresponding density profiles along the three hori-
zontal axes of the Morse complex (red, black and blue for the upper, middle
and lower axes, respectively). The density profile before simplification is
represented in grey. The lowest panel shows an equivalent cancellation of
critical pairs in a discrete Morse complex by the discrete gradient reversal.
Note that non-essential gradient pairs and simplexes have been omitted for
clarity, as they are not affected by the path reversal.
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(iv) Extend the ascending manifold of each β
j
k with the ascending

manifold of σ k.
(v) Delete the critical simplexes σ k and σ k+1, together with their

four ascending and descending manifolds and all of the arcs leading
to or emanating from them.

It is important to remark that, in general, the simplification of a pair
may lead to an increase in the total number of arcs in the complex.
This is particularly true when none of the cancelling simplex is a
1-saddle or a D − 1-saddle, as in that case, the number of arcs
is not bounded. Moreover, there exist two specific cases where a
cancellation is impossible. The first is when critical simplexes do
not share an arc in the DMC. The second is when they share more
than one arc, as in that case, the gradient path reversal would lead
to the creation of a looping path in the discrete gradient, which is
forbidden (see Section 3). The detailed procedure to deal with this
is explained in Section 7.

6.3 Filtering Poisson noise

As mentioned previously, mainly because of the Poisson noise, it
is not possible to use the raw DMC to identify structures in the
cosmic web. In fact, most of the critical points, arcs and manifolds
are actually spurious artefacts created by the sampling noise. This
is especially true in the present case, where we wish to use the
DTFE density and a simplicial complex computed from the De-
launay tessellation of a discrete realization. As a matter of fact,
the scale-free nature of the DTFE makes it locally very sensitive
to the Poisson noise, as information is always locally extracted at
the sample resolution limit. Our approach to remedy this problem
consists in computing a significance level for each persistence pair
and cancelling the persistence pairs whose significance is below a
given threshold.

Let r be the persistence ratio of a persistence pair qk = [σkσk+1],
then

r (qk) = ρD (σk+1) /ρD (σk) . (3)

We note Pk (r0) is the cumulative probability that a persistence pair
of critical simplexes of orders k and k + 1 and with the persistence
ratio r ≥ r0 exists in the Delaunay tessellation of a random discrete
Poisson distribution. It is then convenient to denote the relative
importance of a given critical pair qk in terms of its significance,
S (qk), expressed in units of ‘σ ’ with an analogy to the Gaussian
case:

S (qk) = Sk (r (qk)) = Erf−1

(
Pk (r (qk)) + 1

2

)
, (4)

where Erf is the error function. As a purely analytical derivation of
Pk (r) seems clearly out of reach, we use the Monte Carlo simulation
to estimate it, measuring Pk (r0) as the fraction of persistence pairs
of order k with the persistence ratio r ≥ r0 in a Poisson sample. The
results are shown in Fig. 12. In that figure, the values of Pk (r) are
plotted as a function of r in green, blue and red for k = 0, 1 and
2, respectively, and the horizontal dashed lines represent different
significance levels in units of ‘σ ’, ranging from S = 1σ (top panel)
to S = 5σ (bottom panel). From these results, the following fits can
be extracted in the 3D case (represented as the black-dashed lines
in Fig. 12):

P0(r) = exp[−α0(r − 1) − α1(r − 1)α2 ]

with α ≈ [3.694, 0.441, 2.538], (5)

Figure 12. The cumulative probability Pk (r) that a persistence pair of order
k with the persistence ratio greater or equal to r exists in a 3D scale-free
Gaussian random field (coloured plain curves) and in a 50 h−1 Mpc dark
matter cosmological simulation (coloured dashed curves). The red, blue
and green curves correspond to maxima–1-saddle, 1-saddle–2-saddle and
2-saddle–minima pairs, respectively. The different shades, from darker to
lighter, correspond to 643-, 1283- and 1923-particle realizations, respec-
tively. The black-dashed curves show fits to the Gaussian case, as presented
in the main text, while the horizontal dashed lines correspond to different
significance levels in units of ‘σ ’, ranging from S = 1σ (top panel) to S =
5σ (bottom panel).

P1 (r) = f1(1 − t) + f2t

with f1 = exp [−β0 (r − 1)] , f2 = β1r
−β2 ,

t = (1 + β3/u
β4 )−1,

β ≈ [2.554, 4.000, 9.000, 1.785, 14.000] , (6)

P2 (r) = [1 + γ0 (r − 1)]−γ1

with γ ≈ [0.449, 2.563] , (7)

and in the 2D case we obtain

S2D
0 (r) = exp

[−α0 (r − 1) − α1 (r − 1)α2
]

with α ≈ [2.00, 0.01, 3.50] , (8)

S2D
1 (r) = (r − 1)−β0[1+β1 log(r−1)]

with β ≈ [0.75, 0.20] . (9)

A relatively similar approach was undertaken in a code named ZOBOV

(Neyrinck 2008) to measure the significance of cosmological voids.
The approach developed in this paper nevertheless differs from
ours in that it is limited to voids and that they do not use persistence
pairs. Instead, they pair minima of the density field to the lowest
1-saddle point on the surface of their ascending 3-manifolds (i.e.
the voids themselves) that is not already paired to another minimum
with higher density. This explains why our fit of P0 (r) differs from
theirs.

The fact that the expression of the fits for k = 0 and 2 is rela-
tively simple compared to the one for k = 1 may seem intriguing
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at first sight. However, if the fit for function P1 (r) actually requires
more coefficients, then it is mainly because it undergoes some sort
of transition around r = 4, which roughly corresponds to a signifi-
cance level of 3.5σ . We believe that this only reflects the nature of
the DTFE itself, whose probability distribution function is clearly
biased towards high densities as the number of minima is limited
by the comparatively larger volume of the Voronoi cells they oc-
cupy (see Schaap & van de Weygaert 2000; van de Weygaert &
Schaap 2009). The size of our Monte Carlo sample being limited
results in an increase in the number of k = 1 type pairs when fewer
and fewer comparatively lower density minima become available
to form pairs. We also note that this tendency is present in the
cumulative probabilities of the persistence pair ratio measured in
cosmological simulations as well (coloured dashed curves). Never-
theless, those probabilities are significantly higher than that in the
Poisson sample for any value of k and it therefore seems that it
should be reasonably easy to filter spurious persistence pairs with-
out affecting too much those storing precious information on the
cosmic web topology.

6.4 Illustration in 2D

Fig. 13 shows the DMC of a 2D discrete distribution of ∼350 000
particles with periodic boundary conditions computed at different
levels of significance. The discrete distribution (upper left-hand
panel) was obtained by projecting a subsampled 10 h−1 Mpc slice
of a 50 h−1 Mpc large dark matter N-body simulation at redshift
z = 0. The resulting Delaunay tessellation, composed of ∼1000 000
1-facets and 670 000 2-facets, and the corresponding DTFE density
field are shown in the upper middle and upper right-hand panels.
Note that identifying the filamentary structure in such a distribution
is particularly challenging because of its very high dynamic range
and also because many filaments simply disappear into low-density
regions as they leave the slice in the original 3D distribution. The
filamentary structure captured by the DMC is depicted in red in the
middle and bottom rows through the representation of its ascending
1-manifolds, after cancellation of the persistence pairs at a signifi-
cance level of 0σ (left-hand panel, no simplification), 2σ (middle
panel) and 4σ (right-hand panel). The middle left-hand panel nicely
illustrates the strong influence of the Poisson noise, as without sim-
plification, filaments are basically detected almost everywhere in
the distribution. This is particularly obvious when zooming in what
was a dark matter halo in the former 3D distribution: whereas one
can identify by eye a few obvious filaments connecting to the central
clump, the algorithm (correctly) detects a swarm of local peaks and
filaments locally created by random fluctuations in the distribution.

It is quite striking though how much applying the above-described
persistence-based simplification procedure succeeds at selecting
what one would intuitively define as a filament. Already, at a 2σ

level (middle panels of the middle and bottom rows), it is clear
that the large-scale network of filaments is correctly identified as
well as the valley resulting from the projected cosmic voids of the
non-projected distribution (the ascending 2-manifolds associated to
the minima, symbolized by the white discs). At a level of 2σ , the
probability that a topological feature such as an arc in the DMC is
the result of the Poisson noise is ∼5 per cent. At 4σ , this probability
goes down to ∼0.006 per cent and any arc in the DMC can therefore
safely be considered a feature of the underlying distribution. The
lower right-hand panel shows the arcs of the DMC that link maxima
(purple crosses) and saddle points (green triangles) at a significance
level of 4σ around the projection of a large dark matter halo. At that
level, the intricate initial network is reduced to a very neat set of

filaments branching on a central clump. Note that while the network
itself is simplified, the resolution is preserved, which, for instance,
allows for the correct identification of the merger of two relatively
noisy filaments in the top right-hand corner while preserving a very
clean network on large scale (middle right-hand panel).

The application to the 3D distribution and in particular galaxy
catalogues and large-scale N-body simulations is presented in the
companion paper, Paper II.

7 BO U N DA RY C O N D I T I O N S
A N D T E C H N I C A L I T I E S

7.1 Boundary conditions

Whereas boundary conditions are not a concern in the Morse the-
ory, as it is defined over infinite or borderless spaces, things are
clearly different when one tries to apply it to real data sets. The
easiest case corresponds to periodic boundary condition data, such
as those encountered in the N-body simulation of the matter dis-
tribution on large scales in the Universe. Because it is impossible
to simulate the whole Universe and the gravity has an infinite out-
reach, periodic boundary conditions are often used as a trick to
obtain a smooth gravitational potential and emulate the isotropy of
space within a restricted volume usually shaped as a box. Enforcing
periodic boundary conditions over a cube basically amounts to as-
similating opposite faces, any object leaving the cube through one
face immediately enters the opposite one. Mathematically speak-
ing, such a space is called a torus T

d , where d is the number of
dimensions, and the Morse theory readily applies to such spaces.
From a practical point of view, we use the periodic exact 3D periodic
boundary conditions Delaunay tessellation (Caroli & Teillaud 2010)
implemented in CGAL13 when the distribution is 3D. We also im-
plemented our own periodic boundary conditions within CGAL for
the d �= 3 case using a simpler, though less-rigorous and optimized,
technique. This method basically consists in building a larger distri-
bution by replicating a fraction of the box to extend each boundary,
computing the Delaunay tessellation over this extended domain and
then identifying the identical k-facets crossing the opposite faces of
the initial box (the Delaunay tessellation of Fig. 13 was obtained
using such method).

Of course, periodic boundary conditions only apply to periodic
data sets, which is usually not the case for observational data, and
one therefore needs to treat the boundaries of the distribution with
special care. The simplest way to do so consists in transforming
the definition domain of the data set into a boundaryless domain,
a procedure called compactification. Usual compactification tech-
niques consist in transforming the definition domain into a sphere
by adding a point at infinity and attaching it to each boundary cell of
the Delaunay tessellation or transforming it into a torus, practically
making it periodic by replicating a mirror image of the distribution
through its boundaries. Both of these methods have pros and cons.
Whereas sphere compactification is easy to build, whatever be the
geometry of the initial data set, it tends to pollute measurements
around the boundaries by affecting the discrete gradient computa-
tion, therefore creating numerous fake manifolds and arcs that have
to be ignored. This is not the case with the torus compactification,
which creates relatively smooth conditions close to the boundaries,
but it may only be easily implemented on cubic boxes and requires

13 CGAL is the C++ Computational Geometry Algorithm Library, see
http://www.cgal.org
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Figure 13. The filaments measured in a 2D distribution obtained by projecting the particles from a slice of an N-body cosmological simulation. The initial
discrete distribution, its Delaunay tessellation and a zoom in a halo (from the upper middle part of the distribution) are displayed in the top row, with colours
corresponding to the DTFE density. The filamentary structure is traced in red in the middle row, as the geometry of the arcs remaining after cancellation of
persistence pairs with the significance less than 0σ (middle left-hand panel), 2σ (middle) and 4σ (middle right-hand panel). A zoom around a projected halo
is shown on the bottom row. The white discs, green triangles and purple crosses stand for the minima, saddle points and maxima, respectively. (Note that they
are only represented on some panels for clarity.)

replicating the data set a large number of times (27 times in 3D),
significantly increasing the necessary computational time and re-
sources accordingly.

Our implementation of the boundary conditions is a hybrid be-
tween the sphere and torus compactification that tries to preserve
the advantages of both while getting rid of their limitations. The
idea is that the torus compactification is efficient because of the
relatively natural extrapolation of the density field it allows, which,

as a result, does not affect the computation of the discrete gradient
at a large distance from the boundary. We therefore allow the user to
choose what fraction of the distribution should be mirrored on each
boundary (a value around 10 ∼ 15 per cent of the initial distribution
size seems to work fine) and then apply a sphere compactification
on the new distribution by adding a point at infinity, with minus
infinite density, that forms simplexes with the new boundary of the
enlarged distribution. We then proceed with tagging as ‘boundary’
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Figure 14. Illustration of the computation of the DMC with non-periodic
boundary conditions. The boundary of the initial 2D distribution is delimited
by the thin black square and any particle in the distribution within a distance
of 10 per cent the initial domain size is mirrored (see also Fig. 13). The
thick green and purple network shows the 3σ filaments measured in the
non-periodic distribution, the purple part being discarded after topological
simplification as belonging to the boundary. The filaments obtained in the
periodic boundary situation are displayed in red for comparison.

any k-simplex of the Delaunay tessellation that contains a replicated
vertex, the infinite vertex or whose DTFE density may have been
affected by the distribution outside the definition domain. This last
condition in fact prevents the boundary simplexes, whose DTFE
density may be wrong, to affect the resulting DMC and we deter-
mine which simplexes may be affected by checking whether the
circumsphere of each highest-dimensional d-simplex intersects the
boundary, in which case it is, with all its facets and vertices, tagged
as ‘boundary’.

Note that one has to pay particular attention to the boundaries
during the topological simplification process as the persistence of
critical pairs formed with a boundary simplex has spurious persis-
tence ratios. The point at infinity is special; it has a minus infinite
density and is allowed to form persistence pairs with as many ver-
tices as necessary, any of those persistence pairs having infinite
persistence. The persistence pairs formed between the non-infinite
boundary simplexes and those within the valid part of the distribu-
tion are treated normally during the simplification process, but the
topological features they form are nevertheless spurious and any
persistence pair with at least one critical simplex on the boundary
is therefore deleted14 after topological simplification. The whole
process is illustrated in Fig. 14 in the 2D case, using the same dis-
tribution as that of Fig. 13. In that figure, the filamentary structure
detected at 3σ is represented for the same distribution as when it
is considered periodic (thin red network) and non-periodic (thick
green network), and it is clear that both mostly agree. One can see
none the less that, as should be expected, the small portions of the

14 We really mean deleted in that case and not cancelled as a regular pair
would be.

(red) periodic network crossing the boundaries cannot be detected in
the non-periodic case and that a few portions of (green) filaments ly-
ing slightly farther away are detected only in the non-periodic case.
This results from the fact that persistence pairs of distant critical
simplexes may be different in the non-periodic distribution, because
the k-cycles coupling them are not allowed to cross the boundaries.
As a result, the persistence ratios of certain critical points may differ
in both cases and they may therefore still exist at the 3σ level in
the non-periodic case, while they were cancelled at the 2.5σ level
in the periodic one.

7.2 Smoothing the manifolds

Because the scale resolution of practical samples is always limited,
so is the resolution of the ascending and descending manifolds of
the DMC. When identifying the filaments, voids or walls in cosmo-
logical distributions, their precise shape therefore becomes arbitrary
at scales lower than the initial sampling resolution. Within our im-
plementation, the DMC features are subsets of the initial Delaunay
tessellation or of its dual Voronoi tessellation and the identified
structures therefore naturally tend to adapt to the measured sample
much better than they would if one was using a regular sampling
grid, for instance. The DMC is nevertheless always computed at the
sampling resolution limit and its geometry is mainly dictated by the
Poisson noise on that scale. It may therefore be desirable to have
a way to enforce some continuity and differentiability even at the
cost of the loss in resolution (e.g. for representation purposes). The
smoothing method that we use is pretty much the same as that pre-
sented in Sousbie et al. (2009) as it presents the advantages of being
simple, robust and fast. The idea involves smoothing the filaments
individually by fixing the critical points and averaging the position
of each non-fixed segment’s endpoint with the position of its closest
neighbouring endpoints a given number of times. Within our imple-
mentation, a filament is defined as a sequence of N linked vertices,
the vertices corresponding to the centre of mass of simplexes in the
Delaunay tessellation. Let xi

j be the jth coordinate of the ith vertex.
Then, after smoothing, its new coordinates, yi

j, are computed as

yi
k = Aijx

j
k , (10)

with

Aij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3/4 if i = j = 0 or i = j = N,

1/2 if i = j,

1/4 if i = j + 1 or i = j − 1,

0 elsewhere,

(11)

where equation (10) is applied s times in order to smooth over s
simplexes in the simplicial complex. The corresponding smoothing
length is naturally adaptive and such a smoothing ensures the con-
tinuity of the filaments’ location over s Delaunay simplexes. Note
that it is very easy to adapt this method to the ascending and de-
scending manifolds of the DMC (i.e. the voids, walls, etc.) as any of
them is defined as a simplicial complex within our implementation.
The position of each vertex in a manifold can therefore similarly
be averaged with that of its neighbours s times to obtain sufficient
smoothness.

7.3 Essential implementation issues

Finally, we close this section by presenting two technical issues that
are essential for the practical implementation of the algorithm.
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7.3.1 Cancellation order

When cancelling persistence pairs, the order in which the pairs are
cancelled has a crucial importance, both in terms of computational
time and in terms of memory consumption. This is especially true
in 3D. In fact, where the number of arcs linking a given 1-saddle (2-
saddle) and a maximum (minimum) is always 2, there is no bound
on the number of arcs between two saddle points of different types.
Following the arc redirection algorithm described in Section 6.2, the
cancellation of two saddle points of different types may therefore
lead to a dramatic increase in the total number of arcs in the complex.
Let P and Q be the 1-saddle and 2-saddle, respectively. Then P is
linked to P↑ = 2-maxima and P↓ = 2-saddles, while Q is linked
to Q↑ = 1-saddles and Q↓ = 2-minima. The cancellation therefore
creates Nc = (P↓ − 1)(Q↑ − 1) arcs and destroys Nd = 2 + 2 + P↓
+ Q↑ − 1 arcs, and the number of additional arcs after cancellation
is N = Nc − Nd ∝ P↓ Q↑ for large values of P↓ and Q↑. This means
that the number of arcs in the complex may temporarily increase
quadratically and it is not uncommon to obtain saddle points with
hundreds of thousands of arcs at a given moment.15 Within our
implementation, we therefore always cancel the pair {P, Q}, with
P the critical point of highest type, that minimize the number N of
created arcs first, with N = Nc − Nd = (P↓ − 1)(Q↑ − 1) − P↓ −
P↑ − Q↓ − Q↑ + 1.

7.3.2 Impossible cancellations

There exist special configurations where two critical points are
linked by two or more different arcs (think, for instance, of the
circular crest around the crater of a volcano). Those particular con-
figurations cannot be cancelled, as applying a discrete gradient
reversal (see Section 6.2) would result in the formation a V-path
(i.e. discrete integral line) that loops on to itself; this is impos-
sible as a V-path is a strictly decreasing alternating sequence of
k-simplexes (see Definition 3.7). This is not a problem though for
the cancellation of the maximum–1-saddle and minimum–2-saddle
persistence pairs, as such persistence pairs cannot be formed if the
critical points are linked by more than one arc [taking the example
of the volcano, the highest point on its crest is a maximum, which
is always positive (creating) and this is also the case with the lowest
point on the crest which is a positive saddle point, as it creates the
ring formed by the crest around the volcano]. Yet the 3D case of
a 1-saddle–2-saddle persistence pair is different, as nothing pre-
vents such configurations to occur. In practice, such configurations
do not arise naturally and we noted that using the order for can-
celling pairs defined previously drastically reduces the number of
occurrences of such non-cancellable configurations (of order ∼10
for a 1283-particle simulation cut at 4σ ). For those few remaining
pairs, we offer the possibility in our implementation to skip them
or force their removal after keeping only one of the arcs between
the critical points within the persistence pair. This last option is the
preferred one and although it seems difficult to justify from a theo-
retical point of view, the fact that the occurrence of non-cancellable
pairs depends on the precise cancellation order suggests that it is
acceptable to do so (note that the consequences on the resulting
Morse–Smale complex are quite minimal anyway).

15 This does not mean that hundreds of thousands of arcs will be present in
the simplified complex, as a single maximum–1-saddle or a minimum–2-
saddle persistence pair may later cancel all those arcs leading to a dramatic
decrease in the total number.

8 C O N C L U S I O N

We presented a method that allows for the scale-free and parameter-
free coherent identification of all types of 3D astrophysical struc-
tures in potentially sparse discretely sampled density fields, such as
N-body simulations or observational galaxy catalogues. The method
is based on the Morse theory (Section 2), discrete Morse theory
(Section 3) and persistence theory (Section 4), and the implementa-
tion of the corresponding algorithm was detailed in Sections 5–7. In
particular, our specific algorithm was designed with astrophysical
applications in mind, as it directly applies to the Delaunay tessel-
lation of point set samples,16 and we paid a particular attention to
the computation of the discrete Morse function so that it correctly
represents the underlying DTFE density. From this discrete Morse
function, DisPerSE basically computes the discrete Morse–Smale
complex of the density function and uses it to identify structures: the
ascending 3-, 2-, 1- and 0-manifolds of the theory being identified
to the voids, walls, filaments and clusters, respectively. The imple-
mentation was designed so that each component of the cosmic web
and its geometry can be easily identified and studied as individual
objects or as a group of objects so that their relationship can be
easily recovered: one can, for instance, identify the voids bordering
a given wall or the clusters at the extremities of a given filament.
Moreover, as the persistence criteria were recast in terms of the
confidence level with respect to noise, it makes DisPerSE very easy
to use, as it is the only parameter required to identify structures at
optimal resolution. It shows a great deal of potential for astrophys-
ical applications for the following reasons that distinguish it from
traditional methods:

(i) It applies directly to discrete data sets via their Delaunay
tessellation, which makes it scale free and allows the identified
structures to always be defined down to the resolution limit of the
sample.

(ii) It is based on the discrete Morse theory, which means that,
as opposed to methods based on the smooth Morse theory, the
mathematical formalism does apply rigorously to the type of data
sets one usually has to deal with in astrophysics. This implies that
the well-studied formalism of the Morse theory readily applies to
the numerically identified structures (which is not the case with
watershed-based methods, for instance, see Appendix A).

(iii) All the different types of structures are defined coherently:
triangulated space can basically be divided into sets of volumes, sur-
faces, curves and points that correspond to voids, walls, filaments
and clusters, respectively. Each structure is identified individually
and the cosmic web can therefore be rigorously divided into indi-
vidual filaments, each corresponding to a given saddle point.

(iv) It readily takes into account the sampling and Poisson noise
via the persistence theory, allowing the user to define a detection
confidence level in term of ‘number of σ ’ and provides the corre-
sponding simplification of the DMC. As shown in Paper II, this fact
actually produces results obtained in highly sampled simulations
and sparse galaxy catalogues which are qualitatively very similar,
opening the way to a direct comparison of the properties of the
cosmic web in simulations and observational catalogues.

(v) Because the foundation of the method is based on topology
and uses the persistence theory, it also allows for a very robust
computation of topological invariants such as Betti numbers or the
Euler characteristics (see e.g. van de Weygaert et al. 2010); this is

16 In fact, the algorithm can also be used directly over structured regular
meshes and we implemented a version that works directly on a regular grid.
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possible even in the presence of an important shot noise and without
having to define any smoothing scale; it therefore takes into account
the multiscale nature of the cosmic web (see Paper II).

Its application to 3D cosmic simulated and observed data sets is
presented in the companion paper, Paper II. Let us emphasize, how-
ever, that even if there is a wide range of application in astrophysics
already, the domain of the application of DisPerSE is undoubtedly
wider.
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APPENDI X A : A PPLI CABI LI TY O F THE
M O R S E T H E O RY TO PR AC T I C A L DATA S E T S

There exist a large number of methods to reconstruct a smooth
density field from a discrete sample of galaxies in a catalogue
or a dark matter particle distribution in a cosmological simula-
tion. Whether one uses a simple constant-resolution uniform grid to
sample the original distribution or a more sophisticated scale-free
method, such as the DTFE (Schaap & van de Weygaert 2000; van
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de Weygaert & Schaap 2009), that is able to reconstruct the unbi-
ased density field over the full dynamic range of the sample; the
initial sampling always defines some lower scale resolution below
which one is free to infer the behaviour of the distribution. As the
constraints undergone by a Morse function (Definition 2.2) are es-
sentially local (continuity, differentiability and non-degeneracy of
the critical points), one could imagine designing some sophisticated
interpolation scheme that would enforce Morse properties on the
distribution. In practice, designing such an interpolation scheme
seems extremely difficult though and to our knowledge, this kind
of solution has never been implemented. Another solution consists
in relaxing Morse conditions by computing the manifolds and the
Morse complex of a non-Morse function, and later correcting for
this omission by enforcing the correct combinatorial properties on
the pseudo-Morse complex (see Definition 2.8.1). The approach has
been successfully developed by Edelsbrunner, Harer & Zomorodian
(2003) and Edelsbrunner et al. (2003) for the 2D and 3D cases, re-
spectively, but at the cost of a very high algorithmic complexity.
The method has been implemented and tested for the 2D case, but
there exists no implementation to date in the case of a 3D function,
although the method has been mathematically proved to be correct.
Another more radical approach simply consists in abandoning the
idea of rigorously computing the Morse complex and rather rely-
ing directly on a pseudo-Morse complex. A pseudo-Morse complex
is an approximation of a Morse complex and its combinatorial
properties are not guaranteed by the Morse theory anymore. This
is mainly the result of a fundamental property of the paths de-
fined by following the gradient arrows, the so-called integral lines,
being violated: they are not guaranteed not to cross anymore, as
they should with a Morse function (see Definitions 2.3 and 2.3.1).
The second approach recently became relatively popular in astro-
physics as a way to identify cosmologically significant structures,
mainly using the watershed transform. The watershed technique
(see Beucher & Lantujoul 1979; Roerdink & Meijster 2000) was
first applied to this kind of problem by Platen et al. (2007) as a means
of identifying voids in large-scale structures (see also Platen, van
de Weygaert & Jones 2008; Colberg et al. 2008; Aragón-Calvo
et al. 2010a); it was later extended to the identification of walls
and filaments through a pseudo-Morse complex by Sousbie et al.
(2009) and it is also used by Aragón-Calvo et al. (2010b). However,
although promising, these techniques seem to be doomed by the
lack of a consistent theory and therefore of a good understanding
of the properties of the pseudo-Morse complex, as illustrated in the
following.

The watershed transform segments a field into isolated regions
called basins, the analogues of the ascending manifolds of the min-
ima (or equivalently 0-manifolds, see the top left-hand panel of
Fig. A1). The boundary of those basins delineates the walls (see
the bottom left-hand panel) and the regions at the boundary of three
basins describe the filaments as an approximation of the ascending
manifolds of the first-kind saddle points. We show in Fig. A1 how
the fact that only a pseudo-Morse complex is computed can lead
to subtle but significant errors in the identification of the filaments
in the galaxy distribution. Fig. A1(a) illustrates the problem in 2D,
using a similar implementation to the one presented in Sousbie
et al. (2009). A density field is sampled on a high-resolution Carte-
sian grid and a watershed transform is applied, generating basins
(labelled by letters). The filaments are therefore identified as the
basins’ boundary (black curves) and form a pseudo-Morse com-
plex: a network that links the critical points together (the red, green
and blue discs, standing for the maxima, saddle points and minima,
respectively). One can see that the filaments seem to be correctly

identified but according to the Morse theory, if the watershed trans-
form yielded a correct Morse complex, then field lines would only
cross at critical points and the bifurcation points, located at the inter-
section of at least three basins (for instance, A, B and D or B, C and
D), would therefore be maxima. This is not the case in Fig. A1(a)
because the function is not a Morse function and its gradient lines
may therefore intersect where the filaments seem to bifurcate (the
gradient direction along critical lines is represented by the grey ar-
rows). If the function complies with the Morse criteria, then these
bifurcation points would actually look like the blue-dashed line in
the framed zoom in the upper right-hand corner of the figure. This
is not a significant problem for the identification of filaments in 2D,
as it can theoretically be corrected for through some post-treatment,
but as shown in Fig. A1(b), the consequences are more dramatic in
the 3D case.

In order to assess the extent of this problem, a 3D multiscale ver-
sion of the probabilistic watershed transform presented in Sousbie
et al. (2009) was implemented directly over a Delaunay tessellation
computed from a discrete point sample (see also van de Weygaert
et al. 2009, chapter 7.E). Each vertex of the tessellation is attributed
a density using the DTFE method (van de Weygaert & Schaap 2009)
and the probabilistic watershed transform is applied using the nat-
ural neighbourhood defined by the dual Voronoi cells to propagate
the probabilities. Basically, the minima and maxima are identified
as those vertices with only higher or lower density neighbours,
respectively, and the probability that each vertex belongs to the in-
tegral line of a given extremum is computed according to Sousbie
et al. (2009). This defines the watershed basins attached to minima
and maxima [i.e. the void patches and peak patches according to
the terminology of Sousbie et al. (2009) or the pseudo-ascending
and pseudo-descending 3-manifolds according to the Morse theory
terminology]. Fig. A1(b) shows the triangulated interface between
void patches (i.e. the boundary of the cosmological voids), com-
puted over the Delaunay tessellation of a subsampled 5123-particle
dark matter cosmological simulation in a 50 h−1 Mpc box. This
surface represents the density ‘walls’ of the cosmic web, shaded
according to the locally interpolated density. The surface is seen
from the point of view of the minimum inside the void patch and
one can identify a dark matter halo on the middle right-hand part
of the image. Following Sousbie et al. (2009) (see also Aragón-
Calvo et al. 2010b), the filaments are identified as those segments
located at the 1D interface of at least three different void patches and
are represented by the non-dashed red and yellow lines. It is clear
from the figure that the yellow shaded lines are spurious as they
do not correspond to any filament visible in the overdensity field
projected on to the surface. One can also remark that the network
does not pass through the local maximum located at the centre of
the halo, which should obviously be the case for a cosmological
filament. Actually, a more reasonable network could be obtained
by displacing the red lines to match the blue-dashed ones and re-
moving the yellow-shaded spurious identifications. The cause of
those errors is actually similar to the one described in the previous
paragraph for the 2D case: the density function does not comply
with the Morse criterion and its field lines may therefore cross. The
sketch in the lower left-hand panel illustrates what happens along
the dashed black line, in the plane perpendicular to the surface: the
void patches A and B are sandwiched between C and D, resulting
in the identification of critical lines at the spurious intersection of
ADC and BCD, symbolized by two red dots in the sketch, and the
intersection of the dashed black line and the red and yellow critical
lines in the 3D image. Actually, the only real critical line is at the
true intersection of the four patches, symbolized by the blue dot in
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Figure A1. Illustration of a problem in the identification of the filaments when using the watershed technique to recover the Morse complex directly from
a non-Morse function. Panel (a): filaments (black curves) of a 2D field sampled at discrete locations over a high-resolution grid, with grey arrows showing
the gradient direction along those filaments. The maxima/saddle points/minima are represented as red/green/blue discs, respectively, and the letters designate
regions delimited by filaments. Panel (b): filaments identified on a 3D Delaunay tessellation of a 50 h−1 Mpc large dark matter simulation with the density
computed using the DTFE. The surface represents the boundary of a void, shaded according to the logarithm of the density and viewed from its corresponding
minimum. The red and yellow curves show the filaments detected by a multiscale watershed method. See the main text for more explanations.

the sketch and blue-dashed line in the figure (i.e. where the field
lines really end, as represented by the grey arrows).

This tendency of the void and peak patches to get sandwiched
between each other is perfectly natural and understood in the Morse
theory, and it is not a simple consequence of the particular selected
sampling method, but rather of the fact that the sampling is used at
all. Moreover, it seems to be particularly the case in the large-scale
cosmological dark matter density fields, probably as a consequence
of the nature of the initial Gaussian random field from which tiny
perturbations evolve to form the cosmic web (see the discussion on
bifurcation points in Pogosyan et al. 2009). In short, this shows that
the simple approach that consists in requiring filaments to be at the
intersection of walls, which are at the intersection of voids, is a bit
naive, as in practice, when the field is sampled and/or noisy, these
boundaries do not have the right properties and do not trace the
cosmic network correctly. These problems, among others, severely
limit the domain of the application of the watershed-based method
(for instance, it renders practically impossible their usage to count
the number of filaments attached to a given halo or the measurement
of the physical properties of individual filaments) and demonstrate
the necessity to adopt a different, mathematically more consistent
approach.

A P P E N D I X B: SI M P L I C I A L H O M O L O G Y

The homology theory studies the topological properties of spaces
(intuitively, its number of components, how they are connected or if
holes exist, etc.). Roughly speaking, it does so by studying the prop-
erties of deformable chains and loops over these spaces and giving
a method to relate them to sequences of Abelian groups, the so-

called homology groups. The goal of this section is only to give the
reader enough intuitive understanding of its restriction to simplicial
complexes – the weaker simplicial homology – to grasp the concept
of the topological persistence as introduced by Edelsbrunner et al.
(2002). For that reason, although we give a few necessary mathe-
matical definitions, we always try to explain them in a less-formal
and more intuitive manner. One could always refer to Zomorodian
(2009, chapter 4) for a very interesting and somewhat more rigorous
introduction or Hatcher (2002) for a thorough reference.

In order to understand the simplicial homology, one should first
define the k-chain group over a simplicial complex K that contains
p simplexes.

Definition B.1. (k-chain group) Let k ∈ {0, . . . , d} be the dimen-
sion of the k-chain, then {σ 1, . . . , σ p} is the set of all the k-simplexes
in K. Any k-chain ck can be written as

ck =
p∑

i=1

niσi, ni ∈ Z/2Z = {0, 1}.

The k-chain group, Ck (K), is the group with element ck and addition
defined as

ck + c′
k =

p∑
i=1

(ni + n′
i)σi.

In other words, a k-chain is a subset of the simplexes in K with
dimension k. For a 3D simplical complex, such as the Delaunay
tessellation of a galaxy catalogue, it would be a set of vertices, seg-
ments, facets or tetrahedrons. Note that in this definition, although
the more general case could be considered, the coefficients ni are
chosen to be positive integers modulo 2 which, as we will see, is
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Figure B1. Illustration of 1-boudaries and 1-cycles of a 2D simplicial complex extracted from a filtration of a Delaunay tessellation. The facets present in the
filtration are coloured with different shades of blue, depending on the local density, and there are two holes at this stage (white parts). See the main text for
explanations.

sufficient to capture interesting topological properties. This means
that a given simplex can only be absent or present once in a k-chain.
Adding a simplex to a k-chain of Ck (K) that already contains it
therefore results in its actual removal (the addition being performed
modulo 2). This definition alone only relates simplexes of identical
dimensions, but for different values of k, Ck (K) are independent.
The notion of the topology (i.e. the connectivity of the simplexes in
K) can be introduced through the definition of a boundary operator.
Intuitively, the boundary of a simplex is a set of its facets:

Definition B.2. (Boundary operator) Let vi be k + 1 vertices of K
and σ = [v0, v1, . . . , vk] ∈ Ck (K) a k-simplex, then the boundary
of σ is

∂k (σ ) =
k∑

i=0

[v0, . . . , v̂i , . . . , vk] ,

where v̂i means that vertex vi is removed from the list. By extension,
the boundary of a k-chain is defined as

∂ : Ck (K) �→ Ck−1 (K)

c �→ ∂c =
∑

σ∈Ck (K)

∂σ.

Following this definition, the boundary of a k-chain only contains
the (k−1)-simplexes that are facets of exactly one k-simplex in the
chain. In Fig. B1, for instance, the segments in the orange contour

(upper right-hand corner) are the boundary of the facets within the
purple-shaded area; all other purple-shaded segments being faces of
two facets, they cancel each other because of the addition modulo
2 in Definition B.1. A very important property of the boundary
operator is that ∂k−1∂k = 0: the boundary of a boundary is void.
This is intuitively easy to understand as a boundary is a cycle and
cycles do not have boundaries. The orange boundary of Fig. B1,
for instance, forms a chain c1 that does not have a boundary, as its
segments all share the vertices at their extremity with exactly one
other segment in ck, and therefore appears twice when applying ∂1

to c1. The subgroup of Ck (K) formed by the chains which are the
boundary of a chain in Ck+1 (K) is called the image of ∂k+1.

Definition B.3. (kth boundary group Bk) Let Bk = im ∂k+1 be
the image of Ck+1 (K) under the boundary operator. Then Bk is a
subgroup of Ck+1 (K) called the kth boundary group. Its elements
form cycles called bounding cycles and therefore do not have a
boundary.

In Fig. B1, a 1-chain of segments belongs to B1 if it is the bound-
ary of a 2-chain of 2D facets, which is the case for the orange
contour (boundary of the purple-shaded facets) or the boundary of
the yellow-shaded area. This is nevertheless not the case for the
green-, red-, blue- and yellow-dashed contours as no set of facets
can have these contours as a boundary due to the presence of the
two holes. At best, the boundary of a 2-chain formed by a ring
around a hole could include them, but it would necessarily contain
additional cycles (the boundary of the hole). These contours are
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nevertheless cycles and therefore neither do they have boundaries.
They all belong to the wider kth cycle group:

Definition B.4. (kth cycle group Zk) Let Zk = ker ∂k be the subset
of Ck (K) whose image under ∂k is the null (k−1)-chain. Then,
Zk forms a subgroup of Ck called the kth cycle group and the kth
boundary group Bk is included in Zk.

The elements of Zk are any chain that forms a cycle (or equivalently
that have no boundary), and the green-, red-, blue- and yellow-
dashed contours of Fig. B1 do belong to Z1.

These elements are enough to get an idea of how the simplicial
homology works. It involves trying to count how many different
types of cycles it is possible to define for each dimension. To achieve
this, one first needs to define what one means by ‘different types of
cycles’, and to do so, the homology defines an equivalence relation
over the k-chains:

Definition B.5. (Simplicial homology) Two cycles c and c′ in
the kth cycle group Zk are said to be homologous if there exists a
bounding cycle b ∈ Bk such that

c + b = c′.

This equivalence relation can be used to define the class of equiv-
alence of z ∈ Zk, [z], which contains all the elements of Zk that are
homologous to z (i.e. all z′ ∈ Zk that can be written as z + b = z′

with b ∈ Bk).

In a nutshell, Definition B.5 formalizes, for simplicial complexes,
the intuitive idea that two cycles are equivalent if they can be con-
tinuously deformed into each other. This definition is at the core of
the regular homology theory. For instance, the 1-chains represented
by the blue- and yellow-dashed contours of Fig. B1 are homolo-
gous, as one can obtain the yellow one by adding the boundary of
the yellow-shaded 2-chain to the blue 1-chain. On the contrary, the
red- and yellow-dashed 1-chains are clearly not homologous as it is
impossible to find a chain that is both a boundary of a 2-chain and
a transform one into the other through addition. This impossibility
clearly comes from the fact that there exist holes in the simplicial
complex and the homology shows that the presence of these holes
directly affects the maximum number of non-homologous cycles
one can create. This link can be established through the so-called
kth homology group, which elements are the sets of homologous
k-chains:

Definition B.6. (kth homology group) The kth homology group
is the group which elements are the sets of homologous k-chains. It
is defined as the quotient group of the kth cycle group Zk by the kth
boundary group Bk:

Hk = Zk/Bk = ker ∂k/im ∂k+1.

An element h of Hk is represented by the class of equivalence [z] of
all chains homologous to z ∈ Zk.

In other words, in Fig. B1, an element of H1 could be represented
by the blue 1-chains around the smaller hole, as well as chains
homologous to it such as the yellow-dashed one. Another element
is the red 1-chain and its homologous chains, and yet another one is
the class of equivalence of the green contour. But there is something
different with the green 1-chains: it may not be homologous to the
blue and red ones, but it could be obtained by adding to cycles
homologous to the red and blue ones, respectively. This leads us to

the definition of the Betti numbers, by means of which the homology
describes the topology of a space:

Definition B.7. (kth Betti number) The kth Betti number βk is
the rank of the free17 part of Hk:

βk = rankHk = rankZk − rankBk.

To put it simply, the kth Betti number, actually, is the minimal
number of k-cycles equivalence classes (i.e. sets of homologous
k-cycles) that one needs to generate any possible cycle through
homology. Betti numbers are interesting because they are charac-
teristics of the topological properties of a given space and in that
sense allow quantification and comparison of the topologies of dif-
ferent spaces.

APPENDI X C : PERSI STENCE AND BETTI
NUMBERS IN A SI MPLI CI AL COMPLEX

In order to explain the computation of the persistence pair over a
simplicial complex, we use Fig. 6, a figure inspired from fig. 3 of
(Edelsbrunner et al. 2002). Although the reader can always refer to
Appendix D for an explanation of the terminology, it is advisable
to refer to Appendix B for a quick introduction to the simplicial
homology. The initial discovery of persistence was triggered by the
design of a simple algorithm to compute the Betti numbers over
a filtration of a simplicial complex, first presented in Delfinado &
Edelsbrunner (1995). A filtration of a simplicial complex (Definition
4.3) is a concept related to the one of the sublevel set (Definition
4.1). Basically, it consists in a set of subcomplexes which are given
a particular order. Fig. C1 shows the subcomplexes Ki in a filtration
F of a simplicial complex K, the index i being represented in
the bottom left-hand part of each box. It is the counterpart of a
sublevel set in the sense that the arrival order of each simplex in the
filtration can be defined by a function that affects a value to each
simplex, in which case each subcomplex Ki in the filtration can be
defined as a set of simplexes with values higher or lower than a
given threshold vi. Note that the complex K is always the last to
enter the filtration and is therefore represented in box number 17.
In this particular filtration, the simplexes of K enter one at a time
(we skipped a few steps for the sake of conciseness, as symbolized
by the grey hatched box). This does not have to be the case in
general though, but because each subcomplex in the filtration is a
simplicial complex, a particular simplex may never enter a filtration
before any of its facets. In each frame, the newly entering simplex
is coloured in red or blue and the two numbers following the index
are the Betti numbers βi = (βi

0, β
i
1) of Ki . As detailed in Appendix

B, β0 represents the number of components in a complex (i.e. how
many separated ‘islands’ exist), while β1 is the number of holes
or, equivalently, the number of independent non-homologous 1-
cycles one can create in Ki in the more sophisticated language of
homology.

Let us see how Betti numbers can be computed using this particu-
lar algorithm. K0 is always the empty set and so the algorithm starts
with β0 = (0, 0). A vertex first enters F to form K1; this adds one
new component in the filtration, but no one cycle can still be created,
so β1 = (1, 0). As the entering vertex created a new component,

17 The term ‘free’ in the definition actually excludes some specific cycles
that may exist when the space has torsion (think about a möbius strip, for
instance).
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Figure C1. Illustration of the filtration of a 2D simplicial complex. Each box represents one step of the filtration, with index i (lower left-hand corner) and
Betti numbers (β0, β1). The grey hatched box symbolizes the fact that a few steps are not represented.

it is represented in red and is labelled ‘positive’. Step 2 is essen-
tially the same and therefore β2 = (2, 0). In K3 though, the first
segment enters F . Although we had two distinct components in K2,
the segment creates a link between them and only one component
remains. As one component was destroyed, the entering segment is
represented in blue and labelled ‘negative’, and β0 decreases, lead-
ing to β3 = (1, 0) again. Nothing special happens up to K8; every
entering vertex creates a new component, thereby increasing β1,
while each new segment destroys a component, thereby decreasing
the value of β0, leading to β7 = (1, 0). The segment entering K8

is different though, as it does not destroy any component: all the
simplexes in K7 were already linked and the new segment only
links two vertices that already belonged to the same component.
Actually, it creates a new class of 1-cycles (black rounded arrow)
as it is now possible to draw a segment path that starts and ends
at the same segment while passing through each other segment in
the path only once (equivalently, it creates a hole within the cy-
cle). The value of β1 is therefore increased and β8 = (1, 1). The
entering segment is labelled ‘positive’ and represented in red. The
new segment in K9 is of the same kind: it creates a second hole or
equivalently a second class of cycles (black circular arrows) that is
not homologous to the previous one. In fact, one cannot transform
one into the other by adding the boundary of a set of facets, as there

is no facet in the complex yet anyway. The entrance of a facet in
K10 changes this fact, as this facet does fill one of the previously
created hole: by adding the edges of this facet to the cycle created
in K8 one obtains a cycle created in K9, the two classes therefore
becoming homologous (remember that by adding a simplex to a
complex already containing it, one actually removes it). This leads
to β1 being decreased and therefore β10 = (1, 1). The filtration then
goes on until all simplexes in K have entered and β19 = (1, 0).

Although we only presented a 2D example here, the procedure
works for any number of dimensions and one can in general think
of a k-cycle as the shell of a deformed (k + 1)-dimensional sphere
triangulated with k-simplexes, the simplest k-cycle being the facets
of a (k + 1)-simplex. The algorithm therefore consists in labelling
each k-simplex of K as ‘positive’ if it creates a k-cycle and ‘negative’
if it destroys one when entering the filtration.18 Going a bit farther,
one can see that actually any cycle destroyed by an entering simplex

18 The question of how to decide whether a newly entered simplex actually
belongs to a cycle or not is addressed in Edelsbrunner et al. (2002), but
we do not present the method here as it is not essential to understand the
concept of persistence. The implementation of such an algorithm is detailed
in Section 6.2.

C© 2011 The Author
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



Persistent cosmic web – I: Theory and implementation 33

was created earlier in the filtration. For instance, the segment that
enters in K3 destroys the component created by the entering vertex
in K1 or K2. By convention, we will say that it destroys the most
recently created, the vertex entering K2. Identically, the new seg-
ment in K6 destroys the new component created in K4 and the loop
created in K9 is destroyed by the facet entering K10, while the facet
entering K11 destroys the cycle created by the segment entering K8.
This defines pairs of negative and positive simplexes that create and
destroy cycles, the partner of a positive (negative) k-simplex being
a negative (k−1)-simplex (positive (k−1)-simplex). All the cycles
can therefore be attributed some sort of ‘lifetime’ in the filtration,
equal to the index difference of their creating and destroying sim-
plexes. This lifetime is called their persistence. In the case of Fig. 6,
for example, the most persistent topological feature of K would be
that K has two main components, joined by a central bridge: the
segment entering K19 destroys the component created by the vertex
entering K12, the persistence of this topological feature therefore
is 19−12 = 7, which is larger than any other in the filtration. Of
course, for a given complex, the persistence of each cycle (and actu-
ally the cycles themselves) depends on their precise order of arrival
and what the persistence really assesses is the topological properties
of a function defined on the simplicial complex (i.e. the function
that defines the order of arrival of the simplexes in the filtration).

A P P E N D I X D : T E R M I N O L O G Y

Arc. An arc is a 1-cell: an integral line (or a V-path in the
discrete theory) whose origin and destinations are critical points.
The arcs of a Morse–Smale complex comply with Conditions 2.8.1;
in particular, an arc always connects two critical points of order
difference 1 (i.e. in 2D, a minimum and a saddle point or a maximum
and a saddle point).

n-cell. A n-cell is a region of space of dimension n such that all
the integral lines in the n-cell have a common origin and destination.
The n-cells basically partition space into regions of uniform gradient
flow (see Definition 2.7).

Coface. A coface of a k-simplex αk is any p-simplex βp, with p
≥ q, such that αk is a face of βp. In 3D, the cofaces of a segment (i.e.
a 1-simplex) are any triangle or tetrahedron (i.e. 2- or 3-simplex)
whose set of summits (i.e. vertices) contains the two vertices at
the extremities of the segment, as well as the segment itself (see
Definition 3.2).

Cofacet. A cofacet of a k-simplex αk is a coface βk+1 of αk with
dimension k + 1. Equivalently, αk is a facet of βk+1 (see Definition
3.2).

Critical point of order k. For a smooth function f , a critical point
of order k is a point such that the gradient of f is null and the Hessian
(matrix of second derivatives) has exactly k negative eigenvalues.
In 2D, a minimum, saddle point and maximum are critical points of
order 0, 1 and 3, respectively (see Definition 2.1).

Critical k-simplex. A critical k-simplex is the equivalent in the
discrete Morse theory of the critical point of order k in its smooth
counterpart. Note that in 2D, the equivalent of a minimum is a
critical vertex (0-simplex), a saddle point is a critical segment (1-
simplex) and a maximum is a critical triangle (2-simplex) (see
Definition 3.5).

Crystal. A crystal is a 3-cell: a 3D region typically delimited by
sixquads and 12 arcs, within which all the integral lines (or V-paths
in the discrete case) have identical origin and destinations.

k-cycle. A k-cycle in a simplicial complex corresponds to a
k-dimensional topological feature. In 3D, 0-cycles correspond to

independent components, 1-cycles to loops and 2-cycles to shells
(see Definition 4.4 and Appendix B).

Discrete gradient. A discrete gradient of a discrete Morse–Smale
function f defined over a simplicial complex K pairs simplexes of
K according to the rules of Definition 3.6. Within a gradient pair,
the simplex with a lower value is called the tail and the other the
head, and any unpaired simplex is critical (see Definition 3.6).

DMC. The DMC is the equivalent of the Morse–Smale com-
plex applied to simplicial complexes (see discrete Morse theory as
introduced in Section 3) (see Definition 2.5).

Discrete Morse–Smale function. A discrete Morse–Smale func-
tion f defined over a simplicial complex K associates a real value
f (σk) to each simplex σ k ∈ K and that obeys the condition described
in Definition 3.4.

Excursion set. An excursion set of a function ρ (x) is the set of
points for which ρ (x) ≥ ρ0 (see also sublevel set).

Face. A face of a k-simplex αk is any p-simplex βp with p ≤ q,
such that all vertices of βp are also vertices of αk. In 3D, the faces
of a 3-simplex (i.e. a tetrahedron) are the tetrahedron itself, the four
triangles that form its boundaries, the six segments that form its
edges and its four summits (i.e. vertices) (see Definition 3.2).

Facet. A facet of a k-simplex αk is a face βk−1 of αk with
dimension k − 1. The facets of a 3-simplex (i.e. a tetrahedron) are
the four triangles (i.e. 2-simplexes) that form its boundaries (see
Definition 3.2).

Filtration. A filtration of a simplicial complex K is a growing
sequence of subcomplexes Ki of K, such that each Ki is also a
simplicial complex. If the different Ki are defined by a discrete
function ρD as a set of simplexes of K with value ρD (σ ) less than
or equal to a given threshold, a filtration can be thought of as the
discrete equivalent of a sequence of growing sublevel sets of a
smooth function (see Definition 4.3).

Gradient pair/arrow. A gradient pair or arrow is a set of two
simplexes, one being the facet of the other, such that they are paired
within a discrete gradient. Within a gradient pair, the simplex with
a lower value is called the tail and the other the head.

Integral line. An integral line of a scalar function ρ (x) is a curve
whose tangent vector agrees with the gradient of ρ (x). An integral
line obeys Properties 2.3 (see Definition 2.3).

Level set/sublevel set. A level set, also called an isocontour, of a
function ρ (x) at level ρ0 is the set of points such that ρ (x) = ρ0. The
corresponding sublevel set is the set of points such that ρ (x) ≤ ρ0

(see Definition 4.1).
Ascending/descending p-manifold. Within a space of dimension

d, an ascending p-manifold is the set of points from which, following
minus the gradient, one reaches a given critical point of order d
− p. A descending p-manifold is the set of points from which,
following the gradient, one reaches a given critical point of order
p. For instance, ascending 1-manifolds in 3D can be associated to
the filaments and ascending 3-manifolds describe the voids (see
Definition 2.4).

Morse function. A Morse function is a continuous, twice-
differentiable smooth function whose critical points are non-
degenerate. In particular, the eigenvalues of the Hessian matrix
(i.e. the matrix of the second derivatives) must be non-null (see
Definition 2.2).

Morse complex. The Morse complex of a Morse function is the
set of its its ascending (or descending) manifolds (see Definition
2.5).

Morse–Smale function. A Morse–Smale function is a Morse
function whose ascending and descending manifolds intersect trans-
versely. This means that there exists no point where an ascending
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and a descending manifold may be tangent (see Definition 2.6 or
3.8 for the discrete case).

Morse–Smale complex. The Morse–Smale complex is the in-
tersection of the ascending and descending manifolds of a Morse–
Smale function. One can think of the Morse–Smale complex as a
network of critical points connected by n-cells, defining a notion of
hierarchy and neighbourhood among them. In particular, the geom-
etry of the arcs (i.e. 1-cells) is determined by the critical integral
lines (i.e. integral lines that join critical points) and the orders of
two critical points connected by an arc may only differ by 1.

Peak/void patch. In 3D, a peak patch is a descending 3-manifold
(i.e. the region of space from which, following the gradient, one
reaches a given maximum) and a void patch an ascending 3-
manifold (i.e. the region of space from which, following minus
the gradient, one reaches a given minimum).

Persistence. The persistence of a persistence pair (or equivalently
of the corresponding k-cycle it creates and destroys) is defined as the
difference between the values of the two critical points (or critical
simplexes in the discrete case) in the pair. It basically represents its
lifetime within the evolving sublevel sets or filtration in the discrete
case (see Section 4 and Definition 4.5).

Persistence pair. In the smooth context of a function ρ, the per-
sistence pairs critical points Pa and Pb of ρ that, respectively, create
and destroy a topological feature (or k-cycle) in the sublevel sets of
ρ, at levels ρ (Pa) and ρ (Pb). In the discrete case of a simplicial
complex K, a persistence pair is a pair of critical simplexes σ a and
σ b of a given discrete function ρD (σ ), such that σ a creates a k-cycle
(i.e. topological feature) when it enters the filtration of K according

to ρD and σ b destroys it when it enters (see Section 4 or Appendix
C for more details).

Persistence ratio. The persistence ratio of a persistence pair (or
equivalently of the corresponding k-cycle it creates and destroys) is
the ratio of the values of the two critical points (or critical simplexes
in the discrete case) in the pair. The persistence ratio is preferred to
regular persistence in the case of strictly positive functions such as
the density field of matter on large scales in the universe (see also
the definition of persistence).

Quad. A quad is a 2-cell: a 2D region delimited by four arcs
within which all the integral lines (or V-paths in the discrete case)
have identical origin and destinations.

k-simplex. A k-simplex is basically the k-dimensional analogue
of a triangle: the simplest geometrical object with k + 1 summits,
called vertices. It is the building block of simplicial complexes (see
Definition 3.1).

Simplicial complex. A simplicial complex K is a set of simplexes
such that if a k-simplex αk belongs to K, then all its faces also belong
to K. Moreover, the intersection of two simplexes in K must be a
simplex that also belongs to K (see Definition 3.3).

Vertex. A vertex is a 0-simplex or simply a point.
V-path. A V-path is the discrete equivalent of an integral line: it is

a set of simplexes linked by discrete gradient arrows and the facet–
cofacet relation. Tracing a V-path basically consists in intuitively
following the direction of the gradient pairs of a discrete gradient
from a critical simplex to another (see Definition 3.7).
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